首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper addresses the problem of designing robust tracking control for a class of uncertain wheeled mobile robots actuated by brushed direct current motors. This class of electrically‐driven mechanical systems consists of the robot kinematics, the robot dynamics, and the wheel actuator dynamics. Via the backstepping technique, an intelligent robust tracking control scheme that integrates a kinematic controller and an adaptive neural network‐based (or fuzzy‐based) controller is developed such that all of the states and signals of the closed‐loop system are bounded and the tracking error can be made as small as possible. Two adaptive approximation systems are constructed to learn the behaviors of unknown mechanical and electrical dynamics. The effects of both the approximation errors and the unmodeled time‐varying perturbations in the input and virtual‐input weighting matrices are counteracted by suitably tuning the control gains. Consequently, the robust control scheme developed here can be employed to handle a broader class of electrically‐driven wheeled mobile robots in the presence of high‐degree time‐varying uncertainties. Finally, a simulation example is given to demonstrate the effectiveness of the developed control scheme.  相似文献   

2.
Stable adaptive fuzzy control of nonlinear systems   总被引:13,自引:0,他引:13  
A direct adaptive fuzzy controller that does not require an accurate mathematical model of the system under control, is capable of incorporating fuzzy if-then control rules directly into the controllers, and guarantees the global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded is developed. The specific formula for the bounds is provided, so that controller designers can determine the bounds based on their requirements. The direct adaptive fuzzy controller is used to regulate an unstable system to the origin and to control the Duffing chaotic system to track a trajectory. The simulation results show that the controller worked without using any fuzzy control rules, and that after fuzzy control rules were incorporated the adaptation speed became much faster. It is shown explicitly how the supervisory control forces the state to remain within the constraint set and how the adaptive fuzzy controller learns to regain control  相似文献   

3.
A new hybrid direct/indirect adaptive fuzzy neural network (FNN) controller with a state observer and supervisory controller for a class of uncertain nonlinear dynamic systems is developed in this paper. The hybrid adaptive FNN controller, the free parameters of which can be tuned on-line by an observer-based output feedback control law and adaptive law, is a combination of direct and indirect adaptive FNN controllers. A weighting factor, which can be adjusted by the tradeoff between plant knowledge and control knowledge, is adopted to sum together the control efforts from indirect adaptive FNN controller and direct adaptive FNN controller. Furthermore, a supervisory controller is appended into the FNN controller to force the state to be within the constraint set. Therefore, if the FNN controller cannot maintain the stability, the supervisory controller starts working to guarantee stability. On the other hand, if the FNN controller works well, the supervisory controller will be deactivated. The overall adaptive scheme guarantees the global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded. Two nonlinear systems, namely, inverted pendulum system and Chua's (1989) chaotic circuit, are fully illustrated to track sinusoidal signals. The resulting hybrid direct/indirect FNN control systems show better performances, i.e., tracking error and control effort can be made smaller and it is more flexible during the design process.  相似文献   

4.
针对非线性不确定机器人系统的轨迹跟踪控制问题,提出一种鲁棒自适应PID控制算法.该控制器由主控制器和监督控制器组成.主控制器以常规PID控制为基础,基于滑模控制思想设计PID参数的自适应律,根据误差实时修正PID参数.基于Lyapunov函数设计的监督控制器补偿自适应PID控制器与理想控制器之间的差异,使系统具有设定的H_∞的跟踪性能.最后,两关节机器人的仿真实验结果表明了算法的有效性.
Abstract:
A robust adaptive PID control algorithm is proposed for trajectory tracking of robot manipulators with nonlinear uncertainties.The controller is composed of a main controller and a supervisory controller.The main controller is designed based on the traditional PID controller.The parameters of the PID controller are updated online according to the system running errors with the adaptation law based on the sliding mode control.The supervisory controller is proposed to compensate the error between the adaptive PID controller and the ideal controller in the sense of the Lyapunov function with the specified H_∞ tracking performance.Finally, the simulation results based on a two-joint robot manipulator show the effectiveness of the presented controller.  相似文献   

5.
非线性系统的直接自适应输出反馈监督模糊控制   总被引:3,自引:0,他引:3       下载免费PDF全文
针对一类单输入单输出非线性不确定系统,提出一种稳定的直接自适应模糊输出反馈监督控制算法,该算法不需要系统的状态完全可测的假设条件,监督控制不仅迫使系统的状态在指定的集合内,而且当模糊自适应控制处于良好的工作状态时,监督控制可以关闭,证明了整个模糊自适应输出反馈控制算法可以保证闭环系统稳定。  相似文献   

6.
This paper develops an adaptive fuzzy controller for robot manipulators using a Markov game formulation. The Markov game framework offers a promising platform for robust control of robot manipulators in the presence of bounded external disturbances and unknown parameter variations. We propose fuzzy Markov games as an adaptation of fuzzy Q-learning (FQL) to a continuous-action variation of Markov games, wherein the reinforcement signal is used to tune online the conclusion part of a fuzzy Markov game controller. The proposed Markov game-adaptive fuzzy controller uses a simple fuzzy inference system (FIS), is computationally efficient, generates a swift control, and requires no exact dynamics of the robot system. To illustrate the superiority of Markov game-adaptive fuzzy control, we compare the performance of the controller against a) the Markov game-based robust neural controller, b) the reinforcement learning (RL)-adaptive fuzzy controller, c) the FQL controller, d) the Hinfin theory-based robust neural game controller, and e) a standard RL-based robust neural controller, on two highly nonlinear robot arm control problems of i) a standard two-link rigid robot arm and ii) a 2-DOF SCARA robot manipulator. The proposed Markov game-adaptive fuzzy controller outperformed other controllers in terms of tracking errors and control torque requirements, over different desired trajectories. The results also demonstrate the viability of FISs for accelerating learning in Markov games and extending Markov game-based control to continuous state-action space problems.  相似文献   

7.
A supervisory controller is a controller which operates only when some undesirable phenomena occur, e.g., when the state hits the boundary of constraint set. In this note, the author develops a supervisory controller for a nonlinear fuzzy control systems. The supervisory controller works in the following way: if the fuzzy control system (without the supervisory controller) is stable in the sense that the state is inside the constraint set, the supervisory control is idle; if the state hits the boundary of the constraint set, the supervisory controller begins operation to force the state back to the constraint set. The author proves that the fuzzy control system equipped with this supervisory controller is globally stable in the sense that the state is guaranteed to be within the constraint set specified by the system designer. The author also proposes schemes by continuously switching between supervisory and nonsupervisory modes. Finally, the author applies a fuzzy controller with the supervisory controller to the inverted pendulum balancing problem where it is required that the state variables must be within a fixed bound  相似文献   

8.
In this paper, an observer-based direct adaptive fuzzy-neural network (FNN) controller with supervisory mode for a certain class of high order unknown nonlinear dynamical system is presented. The direct adaptive control (DAC) has the advantage of less design effort by not using FNN to model the plant. By using an observer-based output feedback control law and adaptive law, the free parameters of the adaptive FNN controller can be tuned on-line based on the Lyapunov synthesis approach. A supervisory controller is appended into the FNN controller to force the state to be within the constraint set. Therefore, if the FNN controller cannot maintain the stability, the supervisory controller starts working to guarantee stability. On the other hand, if the FNN controller works well, the supervisory controller will be de-activated. The overall adaptive scheme guarantees the global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded. Simulation results also show that our initial control effort is much less than those in previous works, while preserving the tracking performance  相似文献   

9.
10.
A neural network (NN)-based adaptive controller with an observer is proposed for the trajectory tracking of robotic manipulators with unknown dynamics nonlinearities. It is assumed that the robotic manipulator has only joint angle position measurements. A linear observer is used to estimate the robot joint angle velocity, while NNs are employed to further improve the control performance of the controlled system through approximating the modified robot dynamics function. The adaptive controller for robots with an observer can guarantee the uniform ultimate bounds of the tracking errors and the observer errors as well as the bounds of the NN weights. For performance comparisons, the conventional adaptive algorithm with an observer using linearity in parameters of the robot dynamics is also developed in the same control framework as the NN approach for online approximating unknown nonlinearities of the robot dynamics. Main theoretical results for designing such an observer-based adaptive controller with the NN approach using multilayer NNs with sigmoidal activation functions, as well as with the conventional adaptive approach using linearity in parameters of the robot dynamics are given. The performance comparisons between the NN approach and the conventional adaptation approach with an observer is carried out to show the advantages of the proposed control approaches through simulation studies  相似文献   

11.
This paper proposes an adaptive robust fuzzy control scheme for path tracking of a wheeled mobile robot with uncertainties. The robot dynamics including the actuator dynamics is considered in this work. The presented controller is composed of a fuzzy basis function network (FBFN) to approximate an unknown nonlinear function of the robot complete dynamics, an adaptive robust input to overcome the uncertainties, and a stabilizing control input. The stability and the convergence of the tracking errors are guaranteed using the Lyapunov stability theory. When the controller is designed, the different parameters for two actuator models in the dynamic equation are taken into account. The proposed control scheme does not require the accurate parameter values for the actuator parameters as well as the robot parameters. The validity and robustness of the proposed control scheme are demonstrated through computer simulations. This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   

12.
Stable adaptive control using fuzzy systems and neural networks   总被引:12,自引:0,他引:12  
Stable direct and indirect adaptive controllers are presented, which use Takagi-Sugeno fuzzy systems, conventional fuzzy systems, or a class of neural networks to provide asymptotic tracking of a reference signal for a class of continuous-time nonlinear plants with poorly understood dynamics. The indirect adaptive scheme allows for the inclusion of a priori knowledge about the plant dynamics in terms of exact mathematical equations or linguistics while the direct adaptive scheme allows for the incorporation of such a priori knowledge in specifying the controller. We prove that with or without such knowledge both adaptive schemes can “learn” how to control the plant, provide for bounded internal signals, and achieve asymptotically stable tracking of a reference input. In addition, for the direct adaptive scheme a technique is presented in which linguistic knowledge of the inverse dynamics of the plant may be used to accelerate adaptation. The performance of the indirect and direct adaptive schemes is demonstrated through the longitudinal control of an automobile within an automated lane  相似文献   

13.
非线性系统的间接自适应模糊输出反馈监督控制   总被引:1,自引:0,他引:1  
In this paper, an indirect adaptive fuzzy output feedback controller with supervisory mode for a class of unknown nonlinear systems is developed. The proposed approach does not need the availability of the state variables, moreover, a supervisory controller is appended to the adaptive fuzzy controller to force the state to be within the constraint set. Therefore, if the adaptive fuzzy controller cannot maintain the stability, the supervisory controller starts to work to guarantee stability. On the other hand, if the adaptive fuzzy controller works well, the supervisory controller will be deactivated. The overall adaptive fuzzy control scheme guarantees the stability of the whole closed-loop systems. The simulation results confirm the effectiveness of the proposed method.  相似文献   

14.
This paper presents an adaptive nonsingular terminal sliding mode (NTSM) tracking control design for robotic systems using fuzzy wavelet networks. Compared with linear hyperplane-based sliding control, terminal sliding mode controller can provide faster convergence and higher precision control. Therefore, a terminal sliding controller combined with the fuzzy wavelet network, which can accurately approximate unknown dynamics of robotic systems by using an adaptive learning algorithm, is an attractive control approach for robots. In addition, the proposed learning algorithm can on-line tune parameters of dilation and translation of fuzzy wavelet basis functions and hidden-to-output weights. Therefore, a robust control law is used to eliminate uncertainties including the inevitable approximation errors resulted from the finite number of fuzzy wavelet basis functions. The proposed controller requires no prior knowledge about the dynamics of the robot and no off-line learning phase. Moreover, both tracking performance and stability of the closed-loop robotic system can be guaranteed by Lyapunov theory. Finally, the effectiveness of the fuzzy wavelet network-based control approach is illustrated through comparative simulations on a six-link robot manipulator  相似文献   

15.
In this paper, an indirect adaptive fuzzy output feedback controller with supervisory mode for a class of unknown nonlinear systems is developed. The proposed approach does not need the availability of the state variables, moreover, a supervisory controller is appended to the adaptive fuzzy controller to force the state to be within the constraint set. Therefore, if the adaptive fuzzy controller cannot maintain the stability, the supervisory controller starts to work to guarantee stability. On the other hand, if the adaptive fuzzy controller works well, the supervisory controller will be de-activated. The overall adaptive fuzzy control scheme guarantees the stability of the whole closed-loop systems. The simulation results confirm the effectiveness of the proposed method.  相似文献   

16.
Intelligent systems may be viewed as a framework for solving the problems of nonlinear system control. The intelligence of the system in the nonlinear or changing environment is used to recognize in which environment the system currently resides and to service it appropriately. This paper presents a general methodology of adaptive control based on multiple models in fuzzy form to deal with plants with unknown parameters which depend on known plant variables. We introduce a novel model‐reference fuzzy adaptive control system which is based on the fuzzy basis function expansion. The generality of the proposed algorithm is substantiated by the Stone‐Weierstrass theorem which indicates that any continuous function can be approximated by fuzzy basis function expansion. In the sense of adaptive control this implies the adaptive law with fuzzified adaptive parameters which are obtained using Lyapunov stability criterion. The combination of adaptive control theory based on models obtained by fuzzy basis function expansion results in fuzzy direct model‐reference adaptive control which provides higher adaptation ability than basic adaptive‐control systems. The proposed control algorithm is the extension of direct model‐reference fuzzy adaptive‐control to nonlinear plants. The direct fuzzy adaptive controller directly adjusts the parameter of the fuzzy controller to achieve approximate asymptotic tracking of the model‐reference input. The main advantage of the proposed approach is simplicity together with high performance, and it has been shown that the closed‐loop system using the direct fuzzy adaptive controller is globally stable and the tracking error converges to the residual set which depends on fuzzification properties. The proposed approach can be implemented on a wide range of industrial processes. In the paper the foundation of the proposed algorithm are given and some simulation examples are shown and discussed. © 2002 Wiley Periodicals, Inc.  相似文献   

17.
To deal with the iterative control of uncertain nonlinear systems with varying control tasks, nonzero initial resetting state errors, and nonrepeatable mismatched input disturbance, a new adaptive fuzzy iterative learning controller is proposed in this paper. The main structure of this learning controller is constructed by a fuzzy learning component and a robust learning component. For the fuzzy learning component, a fuzzy system used as an approximator is designed to compensate for the plant nonlinearity. For the robust learning component, a sliding-mode-like strategy is applied to overcome the nonlinear input gain, input disturbance, and fuzzy approximation error. Both designs are based on a time-varying boundary layer which is introduced not only to solve the problem of initial state errors but also to eliminate the possible undesirable chattering behavior. A new adaptive law combining time- and iteration-domain adaptation is derived to search for suitable values of control parameters and then guarantee the closed-loop stability and error convergence. This adaptive algorithm is designed without using projection or deadzone mechanism. With a suitable choice of the weighting gain, the memory size for the storage of parameter profiles can be greatly reduced. It is shown that all the adjustable parameters as well as internal signals remain bounded for all iterations. Moreover, the norm of tracking state error vector will asymptotically converge to a tunable residual set even when the desired tracking trajectory is varying between successive iterations.  相似文献   

18.
In this paper an adaptive fuzzy variable structure control (kinematic control) integrated with a proportional plus derivative control (dynamic control) is proposed as a robust solution to the trajectory tracking control problem for a differential wheeled mobile robot. The variable structure controller, based on the sliding mode theory, is a well known, proven control method, fit to deal with uncertainties and disturbances (e.g., structural and parameter uncertainties, external disturbances and operating limitations). To minimize the problems found in practical implementations of the classical variable structure controllers, an adaptive fuzzy logic controller replaces the discontinuous portion of the control signals (avoiding the chattering), causing the loss of invariance, but still ensuring the robustness to uncertainties and disturbances without having any a priori knowledge of their boundaries. Moreover, the adaptive fuzzy logic controller is a feasible tool to approximate any real continuous nonlinear system to arbitrary accuracy, and has a simple structure by using triangular membership functions, a low number of rules that must be evaluated, resulting in a lower computational load for execution, making it feasible for real time implementation. Stability analysis and the convergence of tracking errors as well as the adaptation laws are guaranteed with basis on the Lyapunov theory. Simulation and experimental results are explored to show the verification and validation of the proposed control strategy.  相似文献   

19.
This paper proposes a trajectory tracking scheme which belongs to the sliding mode control (SMC) for the 4-degree-of-freedom (DOF) parallel robots. Two fuzzy logic systems (FLS) are first put forward to replace the constant switching control gain and the width of the boundary layer. The fuzzy adaptive supervisory controller (FASC) is combined with the fuzzy sliding mode control (FSMC) to further reduce the chattering. The design is simple and less fuzzy rules are required. The simulation results demonstrate that the chattering of the SMC is reduced greatly and the parallel robot realizes the trajectory tracking with very good robustness to the parameter uncertainties and external disturbances.  相似文献   

20.
An asymptotically stable decentralized adaptive control scheme is presented to enable accurate trajectory tracking without requiring specific knowledge about the robot dynamics. The scheme is based on expressing the robot dynamics as the product of individual joint quantities, and bounds on certain robot parameters. Parameter adaptation laws are derived using the Lyapunov theory, and asymptotic stability of tracking errors, and boundedness of parameter estimates are established. The control system is shown to be robust to torque disturbances affecting the system and to a class of unmodeled dynamics. The structure of the controller and the performance of the closed-loop system are analyzed. Simulations results using the complete dynamic model of a six degree of freedom industrial robot are presented to demonstrate the excellent tracking performance of the proposed adaptive control scheme. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号