首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于远程监督的关系抽取方法可以明显地减少人工标注数据集的成本,已经被广泛应用于领域知识图谱的构建任务中.然而,现有的远程监督关系抽取方法领域针对性不强,同时也忽略了对领域实体特征信息的利用.为了解决上述问题,提出了一种融合实体特征和多种类注意力机制的关系抽取模型PCNN-EFMA.模型采用远程监督和多实例技术,不再受限于人工标注.同时,为了减少远程监督中噪声的影响,模型使用了句子注意力和包间注意力这两类注意力,并在词嵌入层和句子注意力中融合实体特征信息,增强了模型的特征选择能力.实验表明,该模型在领域数据集上的PR曲线更好,并在P@N上的平均准确率优于PCNN-ATT模型.  相似文献   

2.
刘雅璇  钟勇 《计算机应用》2021,41(9):2517-2522
实体关系抽取是构建大规模知识图谱及各种信息抽取任务的关键步骤。基于预训练语言模型,提出基于头实体注意力的实体关系联合抽取方法。该方法采用卷积神经网络(CNN)提取头实体关键信息,并采用注意力机制捕获头实体与尾实体之间的依赖关系,构建了基于头实体注意力的联合抽取模型(JSA)。在公共数据集纽约时报语料库(NYT)和采用远程监督方法构建的人工智能领域数据集上进行实验,所提模型的F1值相较于级联二元标记框架(CasRel)分别获得了1.8和8.9个百分点的提升。  相似文献   

3.
从文本信息中抽取关系三元组是构建知识图谱的关键任务,近年来受到工业界和学术界的广泛关注。针对旅游领域信息抽取过程中出现的实体嵌套和关系重叠问题,提出了一种基于双仿射注意力机制的实体关系联合抽取模型BAMRel,该模型通过共享编码层参数利用双仿射注意力机制在实体识别部分和关系抽取部分构建分类矩阵,并在关系抽取部分融合实体类型信息,提升关系抽取效果的同时增加了两个任务之间的交互。此外,通过远程监督和人工校验构建了旅游领域关系抽取数据集TFRED,BAMRel模型在此数据集上F1值达到了91.8%,有效地解决了实体嵌套和关系重叠问题。为了验证模型的鲁棒性,在百度DuIE数据集上与主流联合抽取模型进行了对比实验,BAMRel模型取得了最高的F1值80.2%。  相似文献   

4.
针对目前大多数关系抽取中对于文本语料中较长的实体共现句,往往只能获取到局部的特征,并不能学习到长距离依赖信息的问题,提出了一种基于循环卷积神经网络与注意力机制的实体关系抽取模型。将擅长处理远距离依赖关系的循环神经网络GRU加入到卷积神经网络的向量表示阶段,通过双向GRU学习得到词语的上下文信息向量,在卷积神经网络的池化层采取分段最大池化方法,在获取实体对结构信息的同时,提取更细粒度的特征信息,同时在模型中加入基于句子级别的注意力机制。在NYT数据集的实验结果表明提出方法能有效提高实体关系抽取的准确率与召回率。  相似文献   

5.
实体关系抽取旨在从无结构的文档中检测出实体和实体对的关系,是构建领域知识图谱的重要步骤。针对现有抽取模型语义表达能力差、重叠三元组抽取准确率低的情况,研究了融合预训练模型和注意力的实体关系联合抽取问题,将实体关系抽取任务分解为两个标记模块。头实体标记模块采用预训练模型对句子进行编码,为了进一步学习句子的内在特征,利用双向长短时记忆网络(BiLSTM)和自注意力机制组成特征加强层。采用二进制分类器作为模型的解码器,标记出头实体在句子中的起止位置。为了加深两个标记模块之间的联系,在尾实体标记任务前设置特征融合层,将头实体特征与句子向量通过卷积神经网络(CNN)和注意力机制进行特征融合,通过多个相同且独立的二进制分类器判定实体间关系并标记尾实体,构建出融合预训练模型和注意力的联合抽取模型(JPEA)。实验结果表明,该方法能显著提升抽取的效果,对比不同预训练模型下抽取任务的性能,进一步说明了模型的优越性。  相似文献   

6.
在信息抽取领域,从非结构化文本中抽取实体关系是一项基础且重要的任务,且面临实体重叠和模型误差累积等挑战.本文以关系为导向,提出一种改进的实体关系联合抽取方法.该方法将实体关系抽取任务分为关系抽取与实体抽取两个子任务.在关系抽取任务上采用自注意力机制关注词与词之间的重要程度从而模拟实体信息,并使用平均池化来表征整个句子信息;在实体抽取任务上结合关系信息使用条件随机场识别该关系下的实体对.本模型不仅能够利用存在关系必定存在实体对的思想解决实体对重叠问题,还能够在训练过程中利用数据集中已知的关系使实体抽取模块不依赖于关系抽取模块的结果来训练,从而在训练阶段避免误差累积.最后,在WebNLG和NYT公开数据集上验证了该模型的有效性.  相似文献   

7.
从非结构化文本中进行实体和关系抽取已经成为自然语言处理的一项关键任务,然而命名实体识别(NER)和关系抽取(RE)两个任务经常被分开考虑,从而丢失了大量的关联信息。鉴于此,该文提出了一种端到端的基于多层感知机SGM模块进行信息过滤的实体关系联合抽取方法。该方法在不引入外部其他复杂特征的情况下获得了丰富的语义,充分利用了实体和关系之间的关联。该文从句子级、词语级和字符级三个级别输入信息,利用SGM模块进行信息提取以获得高效的语义表示,之后利用Span-attention进行融合得到Span的具体表示,最后利用全连接层进行实体和关系的联合抽取。该文使用NYT10和NYT11数据集验证所提方法的有效性。实验结果表明,在NYT10和NYT11数据集上,该文提出的模型在关系抽取任务中的F1值分别达到了70.6%和68.3%,相比于其他模型有较大提升。  相似文献   

8.
实体关系抽取是构建知识图谱过程中至关重要的一步。将注意力机制引入卷积神经网络或循环神经网络是目前关系抽取任务中比较主流的解决方法,谷歌最新提出的BERT模型在多项自然语言处理任务中都取得了非常好的效果。为了充分融合局部信息和全局信息,并提高处理效率,该文提出了滑动窗口注意力网络模型(Sliding Window Attention Network, SWAN)。该模型首先通过预训练的word2vec生成词向量,加入位置表示并使用TransE模型对实体进行表征以充分突出实体信息,再采用基于BERT的SBERT模型对句子进行表征,在此基础上采用多种滑动窗口注意力机制捕获局部信息,然后在聚集层对抽取到的局部信息进行聚合,最后利用softmax函数来实现实体关系的分类。实验结果表明,提出的SWAN模型在SemEval2010 Task 8数据集上取得了较高的准确率,优于对比的现有关系抽取模型,同时模型训练效率也得到极大提升。  相似文献   

9.
随着医学信息化的推进,医学领域已经积累了海量的非结构化文本数据,如何从这些医学文本中挖掘出有价值的信息,是医学行业和自然语言处理领域的研究热点.随着深度学习的发展,深度神经网络被逐步应用到关系抽取任务中,其中"recurrent+CNN"网络框架成为了医学实体关系抽取任务中的主流模型.但由于医学文本存在实体分布密度较高、实体之间的关系交错互联等问题,使得"recurrent+CNN"网络框架无法深入挖掘医学文本语句的语义特征.基于此,在"recurrent+CNN"网络框架基础之上,提出一种融合多通道自注意力机制的中文医学实体关系抽取模型,包括:1)利用BLSTM捕获文本句子的上下文信息;2)利用多通道自注意力机制深入挖掘句子的全局语义特征;3)利用CNN捕获句子的局部短语特征.通过在中文医学文本数据集上进行实验,验证了该模型的有效性,其精确率、召回率和F1值与主流的模型相比均有提高.  相似文献   

10.
从非结构化文本中联合提取实体和关系是信息抽取中的一项重要任务。现有方法取得了可观的性能,但仍受到一些固有的限制,如错误传播、预测存在冗余性、无法解决关系重叠问题等。为此,提出一种基于图神经网络的联合实体关系抽取模型BSGB(BiLSTM+SDA-GAT+BiGCN)。BSGB分为两个阶段:第一阶段将语义依存分析扩展到语义依存图,提出融合语义依存图的图注意力网络(SDA-GAT),通过堆叠BiLSTM和SDA-GAT提取句子序列和局部依赖特征,并进行实体跨度检测和初步的关系预测;第二阶段构建关系加权GCN,进一步建模实体和关系的交互,完成最终的实体关系三元组抽取。在NYT数据集上的实验结果表明,该模型F1值达到了67.1%,对比在该数据集的基线模型提高了5.2%,对重叠关系的预测也有大幅改善。  相似文献   

11.
关系抽取任务是对句子中的实体对进行关系分类。基于远程监督的关系抽取是用预先构建的知识库来对齐朴素文本,自动标注数据,在一定程度上减少了人工标注的成本,缓解了藏文材料语料不足的问题。但是基于远程监督的实体关系抽取还存在错误标记、提取特征时出现噪声等问题。该文用远程监督方法进行藏文实体关系抽取,基于已经构建的藏文知识库,利用分段卷积神经网络结构,加入语言模型和注意力机制来改善语义歧义问题以及学习句子的信息;在训练过程中加入联合得分函数来动态修正错误标签问题。实验结果表明改进的模型有效提高了藏文实体关系抽取的准确率,且优于基线模型效果。  相似文献   

12.
陈佳沣  滕冲 《计算机应用》2019,39(7):1918-1924
针对现有的基于远程监督的实体和关系抽取方法存在着标签噪声问题,提出了一种基于强化学习的实体关系联合抽取方法。该模型有两个模块:句子选择器模块和实体关系联合抽取模块。首先,句子选择器模块选择没有标签噪声的高质量句子,将所选句子输入到实体关系联合抽取模型;然后,实体关系联合抽取模块采用序列标注方法对输入的句子进行预测,并向句子选择器模块提供反馈,指导句子选择器模块挑选高质量的句子;最后,句子选择器模块和实体关系联合抽取模块同时训练,将句子选择与序列标注一起优化。实验结果表明,该模型在实体关系联合抽取中的F1值为47.3%,与CoType为代表的联合抽取模型相比,所提模型的F1值提升了1%;与LINE为代表的串行模型相比,所提模型的F1值提升了14%。结果表明强化学习结合实体关系联合抽取模型能够有效地提高序列标注模型的F1值,其中句子选择器能有效地处理数据的噪声。  相似文献   

13.
实体关系抽取是构建知识图谱的主要任务之一,旨在确定句子中实体之间的关系类别.远程监督关系抽取方法通过将远程知识库与文本数据对齐来自动标记数据,已成为处理关系抽取任务的主要方式.为解决远程关系抽取不能充分利用单词之间的位置关系信息,并且没有考虑重叠关系之间语义相关性的问题,本文提出一种融合位置特征注意力和关系增强机制的远程监督关系抽取模型.该模型使用基于高斯算法的位置特征注意力机制重新分配句子中单词的权重,并且采用分段卷积神经网络和词级注意力来捕获句子特征.然后,利用基于自注意力的关系增强机制来捕获重叠关系之间的语义关联.在NYT10公共数据集上的实验结果表明,本文模型的性能优于所比较的基线关系抽取模型.  相似文献   

14.
现有实体关系联合抽取方法中,主体抽取与客体和关系抽取任务的交互不足或方法单一,对关系三元组内部潜在的位置及上下文语义关系利用不足.为此,提出了一种融合实体位置及上下文注意力的信息聚合器(Position and Attention based Booster, PATB)用于级联式实体关系联合抽取.首先抽取主体,再融合主体位置更新主体的表示,融合主体与上下文的注意力更新文本的表示,将更新的主体及文本表示进一步用于客体及关系抽取.模型在公共数据集NYT和WebNLG上的F1值分别为90.9%、92.5%,较基线模型分别提升1.3%和0.7%;在3种不同关系模式的测试数据Normal、EPO及SEO中,NYT上的F1值分别为88.9%、93.2%和92.6%,均优于基线模型;在含1~5个三元组的对比实验中的F1值也均优于基线模型,表明融合位置及上下文语义的PATB不仅可提升三元组抽取性能,且能在有复杂重叠关系、多个三元组情况下保持稳定的提取性能.  相似文献   

15.
实体关系抽取任务是对句子中实体对间的语义关系进行识别。该文提出了一种基于Albert预训练语言模型结合图采样与聚合算法(Graph Sampling and Aggregation, GraphSAGE)的实体关系抽取方法,并在藏文实体关系抽取数据集上实验。该文针对藏文句子特征表示匮乏、传统藏文实体关系抽取模型准确率不高等问题,提出以下方案:(1)使用预先训练的藏文Albert模型获得高质量的藏文句子动态词向量特征;(2)使用提出的图结构数据构建与表示方法生成GraphSAGE模型的输入数据,并通过实验证明了该方法的有效性;(3)借鉴GraphSAGE模型的优势,利用其图采样与聚合操作进行关系抽取。实验结果表明,该文方法有效提高了藏文实体关系抽取模型的准确率,且优于基线实验效果。  相似文献   

16.
实体关系三元组的抽取效果直接影响后期知识图谱构建的质量,而传统流水线式和联合式抽取的模型,并没有对句子级别和关系级别的语义特征进行有效建模,从而导致模型性能的缺失。为此,提出一种融合句子级别和关系级别的交互注意力网络的实体和关系联合抽取模型RSIAN,该模型通过交互注意力网络来学习句子级别和关系级别的高阶语义关联,增强句子和关系之间的交互,辅助模型进行抽取决策。在构建的中文旅游数据集(TDDS)的Precision、Recall和F1值分别为0.872、0.760和0.812,其性能均优于其他对比模型;为了进一步验证该模型在英文联合抽取上的性能,在公开英文数据集NYT和Webnlg上进行实验,该模型的F1值相比基线模型RSAN模型分别提高了0.014和0.013,并且该模型在重叠三元组的分析实验也均取得了优于基线模型的性能且更稳定。  相似文献   

17.
药物关系(Drug-Drug Interaction, DDI)抽取是生物医学关系抽取领域的重要分支,现有方法主要强调实体、位置等信息对关系抽取的影响。相关研究表明,依存信息对于关系抽取具有重要作用,如何合理利用依存信息是关系抽取研究中需要解决的问题。该文提出一种融合依存信息 Attention机制的药物关系抽取模型,衡量最短依存路径与句子的相关性,捕捉对实体间关系有用的信息。首先使用双向GRU(BiGRU)网络分别学习原句子和最短依存路径(Shortest Dependency Path,SDP)的语义信息和上下文信息,然后通过Attention机制将SDP信息与原句子信息融合,最后利用融合依存信息之后的句子表示进行分类预测。在DDIExtraction2013语料上进行了实验评估,模型F值为73.72%。  相似文献   

18.
命名实体识别作为自然语言处理中一项十分基础的任务,其目的是从一段用自然语言描述的文本中识别出相应的实体及类型。知识图谱作为以三元组形式存在的外部知识,已经在很多自然语言处理任务中得以应用并取得了良好效果。文中提出了一种基于知识图谱信息增强的注意力对齐命名实体识别方法,首先通过嵌入层和注意力机制嵌入知识图谱信息,获取知识图谱三元组信息的表示;其次通过BERT-BiLSTM获取句子的上下文表示;然后通过一种注意力对齐模块分配三元组权重融合知识图谱信息与句子信息的表示;最后通过softmax控制融合后的表示向量的预测输出,进而获取实体的标签。该方法有效避免了因知识图谱的融合而改变原句子的语义信息,同时也使得句子中的词向量具有丰富的外部知识。所提方法在中文通用数据集MSRA和医疗领域专用数据集Medicine上的F1值分别达到了95.73%和93.80%,相比基线模型提升了1.21%和1.3%。  相似文献   

19.
基于span的联合抽取模型在实体和关系抽取(RE)任务中共享实体span的语义表示,能有效降低流水线模型带来的级联误差,但现有模型无法充分地将上下文信息融入实体和关系的表示中。针对上述问题,提出一个基于上下文语义增强的实体关系联合抽取(JERCE)模型。首先通过对比学习的方法获取句子级文本和实体间文本的语义特征表示;然后,将该表示加入实体和关系的表示中,对实体关系进行联合预测;最后,动态调整两个任务的损失以使联合模型的整体性能最优化。在公共数据集CoNLL04、ADE和ACE05上进行实验,结果显示JERCE模型与触发器感知记忆流框架(TriMF)相比,实体识别F1值分别提升了1.04、0.13和2.12个百分点,RE的F1值则分别提升了1.19、1.14和0.44个百分点。实验结果表明,JERCE模型可以充分获取上下文中的语义信息。  相似文献   

20.
基于span的联合抽取模型在命名实体识别和关系抽取上取得了优异的效果。这些模型将文本span作为候选实体,并将span元组视为候选关系元组。span的语义表示在实体识别和关系分类中共享。然而现有基于span的模型无法很好地捕获这些候选实体和关系的语义,为了解决这些问题,提出了一种融合attention机制的span的联合抽取模型。特别地,attention用于计算相关语义表示,包括span特定特征语义表示和句子上下文的语义表示。实验结果表明,所提出的模型优于以前的模型,并在ACE2005、CoNLL2004和ADE 3个基准数据集上达到了当前最优的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号