首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of the multiphase morphology of uncompatibilized blends of poly(butylene terephthalate) (PBT) and acrylonitrile–butadiene–styrene terpolymer (ABS) and PBT/ABS blends compatibilized with methyl‐methacrylate glycidyl‐methacrylate (MMA‐GMA) reactive copolymers during compounding in a twin‐screw extruder and subsequent injection molding was investigated. Uncompatibilized PBT/ABS 60/40 (wt %) and compatibilized PBT/ABS/MMA‐GMA with 2 and 5 wt % of MMA‐GMA showed refined cocontinuous morphologies at the front end of the extruder, which coarsened towards the extruder outlet. Coarsening in uncompatibilized PBT/ABS blends is much more pronounced than in the compatibilized PBT/ABS/MMA‐GMA equivalents and decreases with increasing amounts of the MMA‐GMA. For both systems, significant refinement on the phase morphology was found to occur after the blends pass through the extruder die. This phenomenon was correlated to the capacity of the die in promoting particles break‐up due to the extra elongational stresses developed at the matrix entrance. Injection molding induces coarsening of the ABS domains in the case of uncompatibilized PBT/ABS blends, while the reactive blend kept its refined phase morphology. Therefore, the compatibilization process of PBT/ABS/MMA‐GMA blends take place progressively leading to a further refinement of the phase morphology in the latter steps, owing to the slow reaction rate relative to epoxide functions and the carboxyl/hydroxyl groups. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 102–110, 2007  相似文献   

2.
A series of acrylonitrile–butadiene–styrene (ABS) copolymer/poly(butylene terephthalate) (PBT)/acrylonitrile‐styrene‐glycidyl methacrylate (ASG) blends with various compositions were prepared and characterized in this study. When the fraction of ABS exceeds a critical value there is a rapid increase in notched impact strength of ABS/PBT blends no matter whether the compatibilizer ASG is present. By combining morphology observation and notched impact results, we found that the ductile‐brittle transition of the blends is closely related to the morphology inversion. The notched impact strength jumps from 15.9 to 33.4 kJ/m2 when phase inversion of ABS occurs at its fraction of 58 wt %. Accordingly, a possible toughening mechanism involved in the blends is proposed on the basis of a careful analysis of fracture energy, crack propagation behavior and fracture surface morphology. It is believed that the continuous ABS phase plays the critical role in toughening ABS/PBT blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46051.  相似文献   

3.
β-PP/acrylonitrile–butadiene–styrene (ABS) blends were prepared with PP, ABS and a novel supported β-nucleating agent or β-PP and ABS. The effect of ABS on the β-nucleation of PP and crystallization and melting behavior of β-PP/ABS blends were investigated by differential scanning calorimeter, wide angle X-ray diffraction, and polarized light microscopy. Results suggested that addition of low content of ABS has no effect on the β-nucleation of PP and crystallization behavior, and melting characteristic of β-PP/ABS blends. However, the increasing content of ABS decreases the β-nucleation, crystallization temperatures, and spherulite size of PP in the blends. However, the blends with the β-PP content above 80?% were obtained at the content of ABS below 40?%.  相似文献   

4.
The performance of acrylonitrile–butadiene–styrene (ABS) core–shell modifier with different grafting degree, acrylonitrile (AN) content, and core–shell ratio in toughening of poly(butylene terephthalate) (PBT) matrix was investigated. Results show PBT/ABS blends fracture in ductile mode when the grafting degree is high, and with the decrease of grafting degree PBT/ABS blends fracture in a brittle way. The surface of rubber particles cannot be covered perfectly for ABS with low grafting degree and agglomeration will take place; on the other hand, the entanglement density between SAN and PBT matrix decreases because of the low grafting degree, inducing poor interfacial adhesion. The compatibility between PBT and ABS results from the strong interaction between PBT and SAN copolymer and the interaction is influenced by AN content. Results show ABS cannot disperse in PBT matrix uniformly when AN content is zero and PBT/ABS fractures in a brittle way. With the addition of AN in ABS, PBT/ABS blends fracture in ductile mode. The core–shell ratio of ABS copolymers has important effect on PBT/ABS blends. When the core–shell ratio is higher than 60/40 or lower than 50/50, agglomeration or cocontinuous structure occurs and PBT/ABS blends display lower impact strength. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 5363–5371, 2006  相似文献   

5.
The melting behavior and isothermal and non‐isothermal crystallization kinetics of poly(butylene terephthalate) (PBT)/thermotropic liquid crystalline polymer (LCP), Vectra A950 (VA) blends were studied by using differential scanning calorimetry. Isothermal crystallization experiments were performed at crystallization temperatures (Tc), of 190, 195, 200 and 205°C from the melt (300°C) and analyzed based on the Avrami equation. The values of the Avrami exponent indicate that the PBT crystallization process in PBT/VA blends is governed by three‐dimensional morphology growth preceded by heterogeneous nucleation. The overall crystallization rate of PBT in the melt blends is enhanced by the presence of VA. However, the degree of PBT crystallinily remains almost the same. The analysis of the melting behavior of these blends indicates that the stability and the reorganization process of PBT crystals in blends are dependent on the blend compositions and the thermal history. The fold surface interfacial energy of PBT in blends is more modified than in pure PBT. Analysis of the crystallization data shows that crystallization occurs in Regime II across the temperature range 190°C‐205°C. A kinetic treatment based on the combination of Avrami and Ozawa equations, known as Liu's approach, describes the non‐isothermal crystallization. It is observed that at a given cooling rate the VA blending increases the overall crystallization rate of PBT.  相似文献   

6.
The thermal behavior and morphology of multicomponent blends based on PA6, polyamide 6 (PA6)/styrene–acrylonitirle copolymer (SAN), PA6/acrylonitrile–butadiene–styrene terpolymer (ABS), and their compatibilized blends with styrene–acrylonitrile–maleic anhydride copolymer (SANMA) were studied using DSC and SEM. The blends were prepared in a twin‐screw extruder under similar processing conditions, keeping the PA6 content fixed at 50 wt %. It was found that, in all the blends, the second component had a nucleating effect and improved the overall degree and rate of crystallization of PA6, whereas addition of a compatibilizer slightly diminished these effects and resulted in significant changes in the blend morphology. The nucleating effect and consequent changes in the crystallization behavior was attributed to the presence of SAN, which is a common component in all the blends. The Tg of PA6 in the blends with a cocontinuous morphology, due to the connectivity between the phases, is higher than in the blends with a disperse‐type morphology. The compatibilized blends have a lower crystallization rate and nucleation ability with a cocontinuous morphology, whereas the uncompatibilized blends have a higher crystallization rate with a higher nucleation ability and a disperse and/or a coarse cocontinuous morphology. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2753–2759, 2002  相似文献   

7.
In this study, the copolymers of methyl methacrylate-co-glycidyl methacrylate (MGD) with different epoxy contents and molecular weights, the styrene-co-glycidyl methacrylate (SGD) and methyl methacrylate-co-maleic anhydride (MAD) were synthesized. The synthesized copolymers, styrene-co-maleic anhydride (SMA) and styrene-acrylonitrile-co-glycidyl methacrylate (SAG) were used as compatibilizers to enhance the impact strength of the acrylonitrile butadiene styrene/poly(butylene terephthalate) (ABS/PBT). The effects of differences in the structure, reactive group type, and molecular weight of the compatibilizers on the mechanical properties, phase morphology, melt viscosity, thermal stability, and melting temperature of the blend were studied. The results showed that functionalized copolymers were successfully synthesized with high monomer conversions. Addition of the functionalized copolymers increased melt viscosity but did not considerably affect thermal stability, tensile strength, flexural strength and melting temperature of the ABS/PBT blends. The compatibilizers improved the dispersion of the PBT phase and prevented brittle fracture, thereby increasing the impact strength of the blend. Among the studied compositions, the ABS/PBT/MGD-5 blend exhibited the highest impact strength of 25.8 kJ/m2 and an appropriate melt flow index of 19.1 g/10 minutes. The compatibilizer should have an appropriate molecular weight to improve the interface bonding force. Regarding the melting viscosity, the reactive group content and compatibilizer dosage should be adjusted to ensure high impact strength.  相似文献   

8.
Polybutylene terephthalate (PBT)/acrylonitrile–butadiene–styrene (ABS) copolymer blends compatibilized by a mixture of styrene–acrylonitrile–maleic anhydride (ASMA) copolymers and epoxy resin (EP) were prepared through melt reactive extrusion. The morphological, rheological, and mechanical properties of these blends were studied. The epoxy functional groups of EP can react with anhydride groups of ASMA and the PBT terminal groups (? OH and ? COOH) simultaneously, leading to the formation of ASMA–EP–PBT graft copolymers. Because of the effective compatibilization of these copolymers at the interface, finer dispersed phase morphologies were obtained. Compared with PBT/ABS/ASMA blends, the addition of EP induced a more stable molten phase structure, with increases of storage moduli, loss moduli, and dynamic viscosities. Results indicated that 1.5 wt% of the EP in the blends was most suited for the compatibilization. Impact properties of these blends were also investigated. POLYM. ENG. SCI., 47:1943–1950, 2007. © 2007 Society of Plastics Engineers  相似文献   

9.
Morphology and crystallization behavior of poly(?‐caprolactone) (PCL) in its 80/20 blends with poly(styrene‐co‐acrylonitrile) (SAN) containing hydrophobic or hydrophilic nanosilica was investigated. It was found that hydrophilic nanosilica displayed a more significant refinement effect on co‐continuous morphology of PCL/SAN blends than hydrophobic nanosilica for its selective distribution within the PCL matrix but closer to the two‐phase interface. Ring‐banded spherulites were observed in both kinds of nanosilica‐filled blends, the periodic distance of which decreased with increasing nanosilica content. Hydrophilic nanosilica reduced the dependence of the periodic distance of ring‐banded spherulites on the crystallization temperature more efficiently than hydrophobic nanosilica. Furthermore, crystallization process of PCL/SAN blends filled with hydrophobic nanosilica was suppressed as the restriction effect of nanosilica on the crystal growth always outweighed their heterogeneous nucleation effect. In contrast, low content of hydrophilic nanosilica (≤1 wt %) were more likely to exhibit growth restriction effect rather than nucleation effect, whereas heterogeneous nucleation effect of higher content of hydrophilic nanosilica (>1 wt %) dominated over growth restriction effect on facilitating the crystallization behavior. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44157.  相似文献   

10.
Poly(2,6‐dimethyl‐1,4‐phenylene oxide)/polyamide 6 (PPO/PA6 30/70) blends were impact modified by addition of three kinds of maleated polystyrene‐based copolymers, i.e., maleated styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA), maleated methyl methacrylate‐butadiene‐styrene copolymer (MBS‐g‐MA), and maleated acrylonitrile‐butadiene‐styrene copolymer (ABS‐g‐MA). The mechanical properties, morphology and rheological behavior of the impact modified PPO/PA6 blends were investigated. The selective location of the maleated copolymers in one phase or at interface accounted for the different toughening effects of the maleated copolymer, which is closely related to their molecular structure and composition. SEBS‐g‐MA was uniformly dispersed in PPO phase and greatly toughened PPO/PA6 blends even at low temperature. MBS‐g‐MA particles were mainly dispersed in the PA6 phase and around the PPO phase, resulting in a significant enhancement of the notched Izod impact strength of PPO/PA6 blends from 45 J/m to 281 J/m at the MBS‐g‐MA content of 20 phr. In comparison, the ABS‐g‐MA was mainly dispersed in PA6 phase without much influencing the original mechanical properties of the PPO/PA6 blend. The different molecule structure and selective location of the maleated copolymers in the blends were reflected by the change of rheological behavior as well. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
The melting and crystallization behaviors of poly(trimethylene terephthalate) (PTT)/acrylonitrile–butadiene–styrene (ABS) blends were investigated with and without epoxy or styrene–butadiene–maleic anhydride copolymer (SBM) as a reactive compatibilizer. The existence of two separate composition-dependent glass-transition temperatures (Tg's) indicated that PTT was partially miscible with ABS over the entire composition range. The melting temperature of the PTT phase in the blends was also composition dependent and shifted to lower temperatures with increasing ABS content. Both the cold crystallization temperature and Tg of the PTT phase moved to higher temperatures in the presence of compatibilizers, which indicated their compatibilization effects on the blends. A crystallization exotherm of the PTT phase was noticed for all of the PTT/ABS blends. The crystallization behaviors were completely different at low and high ABS contents. When ABS was 0–50 wt %, the crystallization process of PTT shifted slightly to higher temperatures as the ABS content was increased. When ABS was 60 wt % or greater, PTT showed fractionated crystallization. The effects of both the epoxy and SBM compatibilizers on the crystallization of PTT were content dependent. At a lower contents of 1–3 wt % epoxy or 1 wt % SBM, the crystallization was retarded, whereas at a higher content of 5 wt %, the crystallization was accelerated. The crystallization kinetics were analyzed with a modified Avrami equation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Blends of PBT/ABS and PBT/ABS compatibilized with styrene‐acrylonitrile‐glycidyl methacrylate (SAG) copolymer were prepared by melt blending method. Grafting degree (GD) of ABS influences the morphology and mechanical properties of PBT/ABS blends. ABS can disperse in PBT matrix uniformly and PBT/ABS blends fracture in ductile mode when ABS grafting degree is more than 44.8%, otherwise, agglomeration takes place and PBT/ABS blends fracture in brittle way. On the other hand, the grafting degree of ABS has no obvious influence on the morphology of PBT/ABS blends and PBT/ABS blends fracture in ductile mode when SAG is incorporated since the compatibilization effect. However, PBT/SAG/ABS blends display much lower impact strength values comparing with PBT/ABS when the blends fracture in ductile way. Side reactions in PBT/SAG/ABS blends were analyzed and which were the main reason for the decrease of impact strength of PBT blends. Tensile tests show that the tensile strength and tensile modulus of PBT blends decrease with the increase of ABS grafting degree due to the higher effective volume. PBT/SAG/ABS blends display much higher tensile properties than PBT/ABS blends since the compatibilization effect. POLYM. COMPOS., 28:484–492, 2007. © 2007 Society of Plastics Engineers  相似文献   

13.
采用自制的甲基丙烯酸缩水甘油酯熔融接枝丙烯腈丁二烯苯乙烯三元聚合物\[ABS-g-(GMA-co-St),AGS]为改性剂,对聚对苯二甲酸丁二醇酯(PBT)/聚碳酸酯(PC)(80/20)共混物进行改性研究。通过扫描电子显微镜、差示扫描量热仪、力学性能和流变性能测试研究了改性后共混物的性能。结果表明,随着AGS含量的增加,共混物中两相间的界面黏结增强; AGS对PBT/PC共混物具有强韧化的作用,与未添加AGS的PBT/PC共混物相比,当AGS含量为10份时,共混物的缺口冲击强度和拉伸强度分别提高了49.8 %和17.4 %;AGS的加入提高了共混物的界面强度和相容性;添加AGS能够提高共混物的结晶峰温度,起到促进晶粒生长的作用。  相似文献   

14.
The morphology and mechanical properties of polycarbonate (PC) blends with rubber‐toughened styrene–maleic anhydride copolymer materials (TSMA) were investigated and compared with the properties of blends of PC with acrylonitrile–butadiene–styrene (ABS) materials. The PC/TSMA blends showed similar composition dependence of properties as the comparable PC/ABS blends. Polycarbonate blends with TSMA exhibited higher notched Izod impact toughness than pure PC under sharp‐notched conditions but the improvements are somewhat less than observed for similar blends with ABS. Since PC is known for its impact toughness except under sharp‐notched conditions, this represents a significant advantage of the rubber‐modified blends. PC blends with styrene–maleic anhydride copolymer (SMA) were compared to those with a styrene–acrylonitrile copolymer (SAN). The trends in blend morphology and mechanical properties were found to be qualitatively similar for the two types of copolymers. PC/SMA blends are nearly transparent or slightly pearlescent. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1508–1515, 1999  相似文献   

15.
Blends of poly(butylene terephthalate) (PBT) with poly(acrylonitrile‐butyl acrylate‐styrene) (ABAS) were characterized by differential scanning calorimetry, infrared, thermogravimetric analysis, and wide‐angle X‐ray diffraction (WAXD) studies. Addition of ABAS polymer to PBT improved the thermal stability of PBT. Infrared studies showed that ABAS polymer chemically interacts with PBT. The crystallization behavior of PBT was modified in the presence of ABAS polymer. The ABAS polymer showed inappreciable effect on melting behavior of PBT but decreased its crystallization. WAXD studies showed some modification in PBT peaks and a peak with increasing intensity corresponding to the β‐crystalline form of PBT. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Maleic anhydride functionalized acrylonitrile–butadiene–styrene copolymer (ABS‐g‐MA) was used as an impact modifier of polyamide 6 (PA6). Epoxy resin was introduced into PA6/ABS‐g‐MA blends to further improve their properties. Notched Izod impact tests showed that the impact strength of PA6/ABS‐g‐MA could be improved from 253 to 800 J/m with the addition of epoxy resin when the ABS‐g‐MA content was set at 25 wt %. Differential scanning calorimetry results showed that the addition of epoxy resin made the crystallization temperature and melting temperature shift to lower temperatures; this indicated the decrease in the PA6 crystallization ability. Dynamic mechanical analysis testing showed that the addition of epoxy resin induced the glass‐transition temperature of PA6 and the styrene‐co‐acrylonitrile copolymer phase to shift to higher temperatures due to the chemical reactions between PA6, ABS‐g‐MA, and epoxy resin. The scanning electron microscopy results indicated that the ABS‐g‐MA copolymer dispersed into the PA6 matrix uniformly and that the phase morphology of the PA6/ABS‐g‐MA blends did not change with the addition of the epoxy resin. Transmission electron microscopy showed that the epoxy resin did not change the deformation mechanisms of the PA6/ABS‐g‐MA blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Poly(butylene terephthalate) (PBT) and acrylonitrile–butadiene–styrene terpolymers (ABS) alloys/organically modified montmorillonite (OMT) nanocomposites using terpolymers of random ethylene, methyl acrylate, and glycidyl methacrylate as the reactive compatibilizer were prepared by different melt‐mixing sequences. The microstructures were characterized by scanning electron microscopy, X‐ray diffraction, transmission electron microscopy, and high‐resolution electron microscopy. It was found that order of mixing affects the dispersion state of OMT in the alloy matrix. The crystallization behavior of PBT in the compatibilized PBT and ABS alloys/OMT nanocomposites was studied by wide angle X‐ray diffraction. It revealed that order of mixing has influence on the preferential crystal growing direction of PBT owing to the antagonistic effect of ABS and OMT. Thermogravimetric analyses and differential scanning calorimetry also showed order of mixing changes the thermal property of the compatibilized PBT and ABS alloys/OMT nanocomposites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2130–2139, 2007  相似文献   

18.
Ternary in‐situ poly(butylene terephthalate) (PBT)/poly(acrylonitrile‐butadienestyrene) (ABS)/liquid crystalline polymer(LCP) blends were prepared by injection molding. The LCP used was a versatile Vectra A950, and the matrix material was PBT/ABS 60/40 by weight. Maleic anhydride (MA) copolymer and solid epoxy resin (bisphenol type‐A) were used as compatibilizers for these blends. The tensile, dynamic mechanical, impact, morphology and thermal properties of the blends were studied. Tensile tests showed that the tensile stregth of PBT/ABS/LCP blend in the longitudinal direction increased markedly with increasing LCP content. However, it decreased sharply with increasing LCP content up to 5 wt%; thereafter it decreased slowly with increasing LCP content in the transverse direction. The modulus of this blend in the longitudinal direction appeared to increase considerably with increasing LCP content, whereas the incorporation of LCP into PBT/ABS blends had little effect on the modulus in the transverse direction. The impact tests revealed that the Izod impact strength of the blends in longitudinal direction decreased with increasing LCP content up to 10 wt%; thereafter it increased slowly with increasing LCP. Dynamic mechanical analyses (DMA) and thermogravimetric measurements showed that the heat resistance and heat stability of the blends tended to increase with increasing LCP content. SEM observation, DMA, and tensile measurement indicated that the additions of epoxy and MA copolymer to PBT/ABS matrix appeared to enhance the compatibility between PBT/ABS and LCP.  相似文献   

19.
The β‐nucleating activity and toughening effect of acrylonitrile–butadiene–styrene (ABS) graft copolymer on isotactic polypropylene (iPP) and the compatibilizing role of maleic anhydride grafted polypropylene (PP‐g‐MAH) on the iPP/ABS blends were investigated. The results show that ABS can induce the formation of β‐crystal in iPP, and its β‐nucleating efficiency depends on its concentration and dispersibility. The relative content of β‐crystal form is up to 36.19% with the addition of 2% ABS. The tensile and impact properties of the iPP were dramatically enhanced by introducing ABS. The incorporation of PP‐g‐MAH into the iPP/ABS blends inhibits the formation of β‐crystal. The crystallization peaks of the blends shift toward higher temperature, due to the heterogeneous nucleation effect of PP‐g‐MAH on iPP. The toughness of iPP/ABS blends improved due to favorable interfacial interaction resulting from the compatibilization of PP‐g‐MAH is significantly better than the β‐crystal toughening effect induced by ABS. POLYM. ENG. SCI., 59:E317–E326, 2019. © 2019 Society of Plastics Engineers  相似文献   

20.
To evaluate mechanical properties of blends prepared by intermeshing corotating twin‐screw extrusion (ICTSE), it is usually necessary to injection mold specimens after the extrusion mixing process. At this study an alternative method is used to obtain testing specimens from ribbons extruded polybutylene terephthalate/acrylonitrile–butadiene–styrene blends, (PBT/ABS), compatibilized with methyl methacrylate–glycidyl methacrylate‐ethyl acrylate (MGE) by ICTSE, and then to correlate their mechanical properties with the processing parameters. Regarding to the extrusion process parameters, it has been noted that higher feed rates, lower screw speeds and narrower kneading blocks have reduced the ductile‐brittle transition temperature (DBTT) of the compatibilized PBT/ABS blends, thereby suggesting that the molecule integrity of blend polymeric components has been preserved and that a good dispersion of the ABS domains in the PBT matrix has been achieved. Injection molded PBT/ABS blends were obtained to compare to the extruded ribbons. The mechanical tests for both specimens have shown the same trends. The injection molded samples have presented poorer impact strength, tensile strain at break and tensile strength, when compared to the respective extruded samples. That behavior has been attributed to the high level of molecular orientation resulting from the injection molding process and mainly to PBT degradation during process. The PBT degradation could have increased its degree of crystallinity, which has been confirmed by DSC measurements. As result, the blend became more brittle, decreasing its Izod impact strength. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号