首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The separation of a phenol-water mixture using a polyurethane membrane by a pervaporation method was investigated. Polyurethane was selected as a membrane material because its affinity for phenol was considered to be high. Polyurethane was prepared by the polyaddition of 1,6-diisocyanatohexane and polytetramethyleneglycol. The polyurethane layer was sandwiched with a porous polypropylene membrane (Celgard® 2500). Pervaporation measurement was carried out under vacuum on the permeate side, and the permeate vapor was collected with a liquid nitrogen trap. The phenol concentration in the permeate solution increased from 0 to 65 wt % with increasing feed concentration of phenol from 0 to 7 wt %. The total flux also increased up to 930 g m-2 h-1 with increasing phenol partial flux. In the sorption measurement at 60°C, the concentration of phenol in the membrane was 68 wt %, which was higher than that of the permeate solution. Therefore, it was considered that the phenol selectivity was based on high solubility in the polyurethane membranes. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:469–479, 1997  相似文献   

2.
Separation of phenol from dilute aqueous solution through polyurethane membranes by pervaporation was investigated. The effect of the methylene group length in poly(alkylene glycols) on permselectivity and solubility of phenol was studied. The poly(alkylene glycols) were obtained by polycondensation of 1,6‐hexanediol, 1,8‐octanediol, and 1,10‐decanediol with a sulfuric acid catalyst. Polyethyleneglycol and polytetramethyleneglycol were commercially available. Progress of the polymerization in the poly(alkylene glycols) was confirmed by FTIR, 1H‐NMR analysis, and SEC measurement. The polyurethanes were obtained by polyaddition reaction of 1,6‐hexamethylenediisocyanate and the poly(alkylene glycol), and were confirmed by FTIR analysis and SEC measurement. The phenol concentration in a permeate liquid increased from 25.1 to 36.2 wt %, and the phenol partial flux also increased from 49.3 to 68.9 g · m−2 · h−1 with increasing the methylene group length in the poly(alkylene glycols), whereas the water partial flux slightly decreased. As a result of sorption measurements, the change in the degree of swelling was small, and the phenol concentration in the membrane increased from 42.1 to 70.8 wt %. The increase in the methylene group length of the poly(alkylene glycols) should contribute to an increase in the hydrophobicity of the polyurethane so that the solubility of phenol to the membrane should increase. The phenol concentration in the permeate liquid and the phenol partial flux increased with an increase in the methylene group length of the poly(alkylene glycols) due to the increase in the phenol solubility for the polyurethane membranes. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 654–664, 2000  相似文献   

3.
Hydroxy‐terminated polybutadiene‐based porous and nonporous polyurethaneurea membranes were prepared and used to study the phenol separation efficiency from dilute aqueous solution. The porosity was developed by incorporation of lithium chloride in polymer matrix with subsequent leaching of the same in hot water. The porous membrane showed higher phenol flux over that of nonporous membrane. Permeate containing about 97 wt % phenol was obtained from feed containing 7 wt % phenol, when pervaporation was carried out with porous polyurethaneurea membrane at 75°C. The activation energies for diffusion, permeation, and pervaporation were calculated from Arrhenius plots. From the activation energy values, it was observed that the pervaporation process became easier with increased phenol concentration in the feed and porosity of the membrane used. The membrane boundary resistance was observed to decrease with increase in temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1857–1865, 2006  相似文献   

4.
以二异氰酸酯和聚酯二元醇合成聚氨酯预聚体,采用二羟甲基丙酸为亲水剂,制备了高固含量(总固物质量分数约50%)的水性聚氨酯(APU)乳液,研究了制备APU乳液的影响因素。结果表明:羧基质量分数为0.8%~1.3%、预聚体中NCO/OH(摩尔比)为1.5~1.9、助溶剂丙酮质量分数为5%左右,可制得高固含量APU乳液。选用结晶性较好的聚酯二元醇和碱性较强的中和剂有利于制备高固含量APU乳液。  相似文献   

5.
姚路路  叶辉  宋影  崔鹏 《化工学报》2016,67(Z1):289-295
以聚己二酸1,4-丁二醇酯二醇(PBA-2000)和甲苯二异氰酸酯(TDI)为主要原料合成水性聚氨酯膜,并对苯/环己烷混合液渗透蒸发性能进行测试,讨论了苯/环己烷混合体系的渗透蒸发分离过程特点。结果表明,当膜厚度增大时,分离因子提高而渗透通量随之下降,这个变化趋势在膜较薄时很明显,达到一定厚度后则变化比较平缓;膜下游侧真空度提高会同时提高膜的分离因子和通量;增大料液中苯的浓度,提高料液温度会提高通量并降低分离因子。液体被分离组分在渗透蒸发膜中经历了吸附溶胀-膜内汽化-气体扩散的质量传递过程,“干区”对分离的影响作用更加显著。  相似文献   

6.
The composite membranes of acrylate polymers and porous substrate were prepared. The separation of the organic solvent–water mixtures and the organic solvent–organic solvent mixtures through these membranes by pervaporation was investigated. The acrylate copolymer membrane showed the organic solvent permselectivity for the separation of the organic solvent–water mixture, especially for the chlorinated hydrocarbon–water mixture separation. The high organic solvent permselectivity should be governed by solubility selectivity. The influence of the ester residue of acrylate on the phenol–water mixture separation was observed. The copolymerization of the macromonomers containing the polystyrene, poly(methyl methacrylate), and polydimethylsiloxane chain had a small effect on the separation of the chlorinated hydrocarbon–water mixture. High flux and low selectivity of organic solvent were observed in the case of the organic solvent mixture separation through the n-butylacrylate membrane. The difference of permeability of organic solvent was observed for the acrylate copolymer which has various structures of ester residue. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 69: 1483–1494, 1998  相似文献   

7.
水溶液中挥发性有机化合物渗透蒸发分离技术   总被引:5,自引:0,他引:5  
介绍了水溶液中挥发性有机化合物 (VOCs)的各种分离方法 ,重点分析了渗透蒸发分离技术经济优势。阐释了渗透蒸发膜的选择标准、渗透蒸发过程的传质机理 ,以及原料液浓度、原料液温度、原料液流量、渗透侧压力、添加剂和膜组件型式等因素对渗透蒸发过程分离效率的影响 ,并简要预测了渗透蒸发过程的发展趋势与动态。  相似文献   

8.
聚环糊精填充PDMS渗透蒸发膜分离苯酚水溶液   总被引:3,自引:1,他引:3       下载免费PDF全文
方志平  姜忠义 《化工学报》2006,57(4):843-848
以聚二甲基硅烷为预聚体,正硅酸乙酯为交联剂,二丁基二月桂酸锡为催化剂,三氯甲烷或正庚烷为溶剂,通过相转化法制备得到了空白聚二甲基硅氧烷(PDMS)膜和聚环糊精(CDP)填充PDMS(CDP-f-PDMS)膜.考察了空白PDMS膜和CDP-f-PDMS膜对苯酚水溶液的渗透蒸发分离性能,证明填充膜优于空白膜.还分别考察了溶剂类型、填充剂用量等制膜因素和操作温度、原料液流量、原料液浓度等操作因素对PDMS膜的渗透蒸发分离性能的影响.当温度为60℃,CDP填充量为1%(质量)时,CDP-f-PDMS膜的渗透通量和分离因子分别可达32.0 g•m-2•h-1和7.2.  相似文献   

9.
采用两步法制备了ZSM-5沸石填充的疏水性端羟基聚丁二烯基聚氨酯(PU)膜,用以分离水中芳香性有机物乙酸异丙酯。对该膜的化学结构、形貌及热稳定性进行了表征,并研究了ZSM-5沸石填充的PU膜的溶胀度及渗透汽化性能。结果表明:添加ZSM-5沸石后,膜的热稳定性明显提高,沸石与膜的相容性较好,且随着添加量的增加,膜的溶胀度降低,分离因子先升后降。在303 K、料液浓质量分数为1%的条件下,ZSM-5添加量为20%(质量分数)时,分离因子达到最高;同时随着料液浓度及操作温度的上升,通量和分离因子都增加。在333 K、料液质量分数为1%的条件下,PU-ZSM-5-20膜的分离因子及通量最高可达288.72 g/(m2·h)和53.21 g/(m2·h)。  相似文献   

10.
将β-环糊精(β-CD)添加到聚醚共聚乙酰胺(PEBA)中制备β-环糊精/聚醚共聚乙酰胺填充膜(β-CD-f-PEBA),用于苯酚-水的渗透汽化分离研究。SEM、FTIR表明β-环糊精在膜中分散均匀且与膜结合紧密,与膜间只有氢键相互作用而未发生化学交联。拉伸实验表明膜的拉伸强度和断裂强度均随着β-CD添加量的增加先减小后增大。采用基团贡献法计算了PEBA、苯酚及水的溶解度参数,证明PEBA膜对苯酚具有较高的选择吸附性。通过溶胀验证膜对苯酚的选择吸附性能,膜对苯酚的吸附量度随着料液中苯酚浓度和膜中β-CD添加量的增加而增加。考察了PEBA和β-CD-f-PEBA膜的渗透汽化性能,当β-CD填充量为0.5%(质量)时,分离效果最佳,渗透通量和分离因子分别为3062.9 g·m-2·h-1和43.3。通过Arrhenius方程计算苯酚和水的渗透活化能分别为97.19和52.12 kJ·mol-1。重复实验表明β-CD-f-PEBA膜的操作稳定性良好。  相似文献   

11.
通过预聚法合成了以己二酸乙二醇丙二醇二酯、聚四氢呋喃二醚、1,5-萘二异氰酸酯(NDI)、甲苯二异氰酸酯(TDI)、1,4-丁二醇及4,4'-二氨基-3,3'-二氯二苯甲烷为主要原料的聚氨酯弹性体。通过水解后弹性体的拉伸、撕裂等力学性能保持率的比较,发现NDI型聚氨酯弹性体比TDI型具有更好的水解稳定性;通过不同温度下和热空气老化后弹性体力学性能保持率的对比,证明NDI型聚氨酯弹性体的耐热稳定性要优于TDI型。  相似文献   

12.
NCO‐terminated polyurethane membranes were prepared using diisocyanate, diol, and trimethylolpropane (TMP) using an NCO/OH ratio of 1.6 : 1. Prepolymer was chain‐extended using cellulose acetate butyrate (CAB) in the ratios of 2 : 1, 4 : 1, and 3 : 1 of NCO/OH. Polyurethane (PU) membranes were characterized by differential scanning calorimeter (DSC) and thermogravimetry (TGA) to investigate their thermal properties. Equilibrium sorption studies were carried out at 30°C in water and ethyl acetate media as well as in their binary mixtures. The influence of CAB on pervaporation (PV) separation of an ethyl acetate/water (92/8, w/w, i.e., azeotropic composition) mixture was investigated. Membranes in this study showed a selectivity of 42.42 with a flux value of 0.187 kg/m/h for 3 : 1% NCO/OH containing PU membrane. In order to gain a more detailed picture of the molecular transport phenomenon, we performed the sorption gravimetric experiments at 30°, 35°, 40°, and 50°C to compute diffusion, swelling, sorption, and permeability coefficients of PU membranes in the azeotropic mixture of ethyl acetate and water. Activation parameters for diffusion and permeation were computed from the Arrhenius equation to understand the polymer/solvent interactions. Sorption trends and diffusion anomalies were established through an empirical equation after estimating the diffusion parameters. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3405–3414, 2007  相似文献   

13.
The structure and the adsorption–desorption properties of zeolite silicalite-I by different treatments after synthesis were studied. The pervaporation properties of the alcohol–water mixture through silicone rubber filled with zeolite silicalite-I by different treatments were also investigated. Treating silicalite-I by acid or/and under steam was found to eliminate the metallic impurities in the zeolite and to perfect the crystalline structure of the zeolite. After treatment, silicalite-I is more selective to alcohol and the desorption of the alcohol from the zeolite is also easier. The silicone rubber membrane filled with treated silicalite-I shows a high performance for alcohol extraction from the dilute aqueous solution by pervaporation. The separation factor of the poly(dimethyl siloxane) (PDMS) membrane filled with silicalite-I treated successively by acid and steam is about 30 when the ethanol content in the feed is 5 wt % at 50°C. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 629–636, 1998  相似文献   

14.
To improve the heat resistance of thermoplastic polyurethane (TPU), in the melt blending process polyamide 1212 (PA1212) and trace amount of 4, 4′-diphenylmethane diisocyanate (MDI) were used as modifier and reactive solubilizer, respectively. Compared with pure TPU, the combinatorial addition of PA1212 and MDI resulted in remarkable improvement of mechanical, thermal, environmental, and aging properties of the TPU matrix. The reactive MDI contributes to the better interfacial adhesion between TPU and PA1212, and the dispersed PA1212 particles act as fillers as well as crosslinking points in the TPU/PA1212/MDI ternary blend. It was revealed that the synergetic effect of PA1212 and MDI is responsible for the enhanced performance of modified TPU. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
The permeation and separation characteristics of alcohol/water systems through porous PVA membranes were investigated. Porous PVA membranes with different pore size and number were prepared by solution blending of PVA with several synthesized polymers or copolymers, such as polyacrylic acid, polyacrylamide, polyacrylonitrile, and methylmethacrylate-co-maleic anhydride, etc. Then casting, and finally extracting the blended polymers or copolymers by solvent from the membranes. The dependency of both permeation and separation on the molecular size and shape of the permeating species was dicussed qualitatively. Moreover, the permselectivity was investigated with attention to the feed composition of alcohol/water mixture and the effect of pore size and number. The selectivity was found to depend on the weight ratio and the molecular weight of polymer introduced to the membrane. When the weight ratio of polymer introduced into the membrane was larger than 0.1, methanol was permeated through membrane preferentially in methanol/water system, and the separation factor increased with increasing the methanol feed concentration. On the other hand, membrane had a selective permeability for water in the other alcohol/water systems. The influence of operating conditions was also studied.  相似文献   

16.
Membranes made from 84% deacetylated chitosan biopolymer were cross‐linked by a novel method using 2,4‐toluylene diisocyanate (TDI) and tested for the separation of t‐butanol/water mixtures by pervaporation. The unmodified and cross‐linked membranes were characterized by Fourier transform infra red (FTIR) spectroscopy, X‐ray diffraction (XRD) studies and sorption studies in order to understand the polymer–liquid interactions and separation mechanisms. Thermal stability was analyzed by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA) while tensile strength measurement was carried out to assess mechanical strength. The membrane appears to have good potential for breaking the aqueous azeotrope of 88.2 wt% t‐butanol by giving a high selectivity of 620 and substantial water flux (0.38 kg m?2 hr?1). The effects of operating parameters such as feed composition, membrane thickness and permeate pressure on membrane performance were evaluated. Copyright © 2005 Society of Chemical Industry  相似文献   

17.
The effect of toluene diisocyanate (TDI) index on the physical properties, structure, and morphology of flexible slabstock polyurethane foams was investigated. Foams based on a 2700 molecular weight triol, 6 pph water, and varying amounts of an 80/20 mixture of 2,4- and 2,6-TDIs were characterized using a number of physical property and morphological measurements. Extraction experiments using dimethyl formamide (DMF) showed that increasing the index increased the level of covalent crosslinking with perhaps a maximum being reached at an index ca. 100. Viscoelastic measurements also supported the claim of increased crosslinking with TDI index. The initial load in load relaxation experiments at 65% strain systematically increased with increasing TDI while the percent decay in a 3-h period decreased. Temperature and/or humidity “plasticized” the load relaxation behavior in all the foams studied, indicating that the hard segment domain physical “crosslinks” play a significant role in the properties of these materials. Interestingly, compression set measurements appeared to be independent of the index, likely due to some level of hard segment continuity, but the induced recovery of the compression set at elevated temperatures was indeed sensitive to the index. The amount of recovery systematically increased with increasing TDI index due to the more enhanced “recoverable” covalent network. Scanning electron microscopy (SEM) studies of the foams showed that the cellular structure was not significantly affected by the index. However, SEM also showed that the structure of the high index foam was not greatly altered by the extraction process while the lowest index foam's cellular structure was severely disfigured. The fine structure of the foams was found to be influenced by the TDI index. Small angle X-ray scattering, differential scanning calorimetry, and dynamic mechanical analysis all provided evidence that an increase in the TDI index promoted some phase mixing of the soft and hard segments. FTIR showed that the short-range ordering within the hard segment domains displayed a maximum at an index of 100. This was attributed to the concentration of hard segment domains being lower at a lower index and their ordering being disrupted at higher indexes due to more extensive covalent crosslinking prior to completion of phase separation. Wide angle X-ray scattering results also confirmed that for the highest index level, the short-range ordering of the TDI moieties was decreased. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2395–2408, 1997  相似文献   

18.
This investigation reports preparation of polyurethane and polyurethane/clay nanocomposites based on polyethylene glycol, isophorone diisocyanate (IPDI), an aliphatic diisocyanate and 1,4‐ Butanediol as chain extender by solution polymerization. In this case PU/clay nanocomposites were prepared via ex‐situ method using 1, 3, and 5 wt % of Cloisite 30B. Thermogravimetric analysis showed that the maximum decomposition temperature (Tmax) of the PU/clay nanocomposite is much higher than the pristine PU. The tensile properties improved upon increasing the organoclay (Cloisite 30B) content upto 3 wt %, and then decreased to some extent upon further increasing the nanoparticle loading to 5 wt %. Optical properties of the nanocomposites were studied by UV‐vis spectrophotometer. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) were used to study the morphology of the nanocomposites. It was observed that with the incorporation of 3 wt % nanoclay the crystallinity in PU nanocomposite increases, then diminishes with further loading. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3328–3334, 2013  相似文献   

19.
CO2 copolymer diol‐based thermal polyurethane elastomers (PPC‐TPU) were prepared by the reaction of CO2 copolymer diol and methylene diphenyl diisocyanate and chain extender (ethylene glycol/1,4‐butanediol/1,6‐hexanediol) (EG/BDO/HG). The rheological and mechanical properties of PPC‐TPU were analyzed. The effects of shear rate, shear temperature, hard segment content, and variety of chain extender on the properties of PPC‐TPU were studied. The results showed that the apparent viscosity (η) of PPC‐TPU decreased with the increasing shear rate (τ), and the non‐Newtonian index (n) was less than 1. PPC‐TPU exhibited a typical character of pseudoplastic non‐Newtonian rheological behavior. The degradation during the processing was obviously inhibited by adding plasticizer and antioxidant. It was also discovered that the apparent viscosity varied with the content of hard segment and chain extender. Under the same temperature (185 °C) and shear rate (50 s?1), the apparent viscosity increased considerably with the raise of hard segment content, and the apparent viscosity and tensile strength of PPC‐TPU with EG as chain extender was the maximum. It can be seen that with the apparent shear rate increasing, the variation tendency of apparent shear stress levels off, and the nonlinear relationship of τγ curve tended to be obvious. PPC‐TPU exhibited a typical character of pseudoplastic non‐Newtonian rheological behavior. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45974.  相似文献   

20.
Separation of components of aqueous waste streams containing organic pollutants is not only industrially very important but also is a challenging process. In this study, separation of a phenol–water mixture was carried out by using a membrane pervaporation technique with indigenously developed polyimide membranes. The membranes were found to permeate water selectively. The total flux as well as that of the individual components were measured. The effect of lithium chloride modification of polyimide film on total flux was investigated. The total flux obtained with 2% lithium chloride modification was about 3.6 times higher than that obtained with virgin membrane. The effects of different parameters such as feed composition and temperature on flux, and separation factor were determined. With modified membrane, a separation factor as high as 18.0 was obtained for water at 27°C and with 8.0 wt % phenol solution. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 822–829, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号