首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper proposes a new soft-transition control strategy for a three-phase zero-current-transition (ZCT) inverter circuit. Each phase leg of the inverter circuit consists of an LC resonant tank, two main switches, and two auxiliary switches. The proposed strategy is realized by planning the switching patterns and timings of these four switches based on the load current information. It enables all the main switches and auxiliary switches to be turned on and turned off under zero-current conditions, and achieves a near zero-voltage turn-on for the main switches. Compared with existing ZCT strategies, the diode reverse recovery current and switching turn-on loss are substantially reduced, the current and thermal stresses in the auxiliary devices are evenly distributed over every switching cycle, and the resonant capacitor voltage stress is reduced from twice the DC bus voltage to 1.3-1.4 times the DC bus voltage. The proposed strategy is also suitable for three-phase power-factor-correction (PFC) rectifier applications. The operation principles, including a detailed analyst based on the state-plane technique, and a design rule are described in this paper. The circuit operation is first verified by a computer simulation, and is then tested with a 50-kW three-phase inverter to the full power level together with a three-phase induction motor in a closed-loop speed/torque control. Significant reductions in switching losses and voltage/current stresses over existing techniques have been experimentally demonstrated  相似文献   

3.
Model-based fault diagnosis in electric drives using machine learning   总被引:4,自引:0,他引:4  
Electric motor and power electronics-based inverter are the major components in industrial and automotive electric drives. In this paper, we present a model-based fault diagnostics system developed using a machine learning technology for detecting and locating multiple classes of faults in an electric drive. Power electronics inverter can be considered to be the weakest link in such a system from hardware failure point of view; hence, this work is focused on detecting faults and finding which switches in the inverter cause the faults. A simulation model has been developed based on the theoretical foundations of electric drives to simulate the normal condition, all single-switch and post-short-circuit faults. A machine learning algorithm has been developed to automatically select a set of representative operating points in the (torque, speed) domain, which in turn is sent to the simulated electric drive model to generate signals for the training of a diagnostic neural network, fault diagnostic neural network (FDNN). We validated the capability of the FDNN on data generated by an experimental bench setup. Our research demonstrates that with a robust machine learning approach, a diagnostic system can be trained based on a simulated electric drive model, which can lead to a correct classification of faults over a wide operating domain.  相似文献   

4.
This paper presents a new auxiliary resonant commutated pole inverter that has series-connected batteries as the DC source. This inverter has two main switches and two auxiliary switches, and of all these devices achieve soft switching. The resonant operations are employed only during the commutating intervals; therefore, pulsewidth modulation (PWM) can be applied to the circuit. This circuit has the feature of using two internal voltage points of the DC source. Consequently, the circuit has the advantages of stability, simplicity in control, and high efficiency. The principle of the circuit operation and the experimental results are described in this paper  相似文献   

5.
This paper concerns the analysis and design of the half-bridge series-resonant inverter with nonlinear-control strategy. A zero-current-switching (ZCS) half-bridge series-resonant inverter with nonlinear control is built. The presented circuit topology is simply configured by two power switches and one output filter. Only one conduction loss of the power switch is present in the power flow path during the inversion period. A turn-on ZCS for the power switch is achieved by an auxiliary resonant cell built before the output choke. The nonlinear-control strategy is designed against the input DC perturbation and achieves good dynamic regulation for the sinusoidal pulsewidth-modulation control. A state-space averaging approach is employed to analyze the system. A design example of a 500-W inverter is examined to assess the inverter performance and it provides high power efficiency above 91% under the rated power.  相似文献   

6.
Improved modulation techniques for PWM-VSI drives   总被引:2,自引:0,他引:2  
PWM-VSI based AC motor drives have two main problems. The inverter is nonlinear which causes instability problems in some specific working points of the AC machine and it emits acoustic noise due to the switching frequency. Nonlinearities like dead-time in the inverter, load dependent DC-link voltage ripple and the voltage drop across the switches are modeled and compensated by improved modulation techniques in order to obtain an almost ideal inverter. Different feedback and feedforward techniques are proposed. The acoustic noise is reduced by using a random modulation strategy. Measurements show a significant improvement by using feedforward and feedback techniques for linearizing the inverter. An improvement in reduction of the acoustic noise emission is also achieved by using random modulation. It is concluded that a combination of a random modulation strategy and feedforward/feedback techniques gives an almost ideal AC motor drive system  相似文献   

7.
This paper presents a new space-vector modulation strategy suitable for a low-cost pulse-width-modulation (PWM) voltage-source (VS) inverter employing only four switches, four diodes, and a split-capacitor bank in the DC link. The work is motivated by the need for an efficient and flexible modulation method, which is optimized with respect to minimum machine-torque ripple. The modulation strategy is named space-vector modulation for four-switch inverter (SVMFSI), and it is realized by planning the switching patterns between four active voltage vectors on the basis of a desired flux trajectory for the stator-flux vector in the AC machine. The strategy is implemented in a single 8-bit microcontroller as a double-sided modulation strategy. Simulations of the machine-torque ripple are performed at a switching frequency of 4 kHz and indicate a torque ripple of 14% at nominal load. Finally, selected results are verified experimentally on a 1.5-kVA prototype B4 inverter. The test results indicate high-quality output-voltage spectra with no low-order voltage harmonics and a harmonic-loss factor (HLF) of 1.12% at unity modulation index  相似文献   

8.
李佑元 《变频器世界》2012,(1):115-117,125
本文介绍了Karl Mayer新一代RSE4-1经编机变频调速系统的工作原理,阐述了通用变频器常见故障的分析处理措施,指出变频调速系统故障有外部原因(占多数)和变频器本身原因,并结合实例,探讨了经编机变频调速系统的故障诊断方法和维修过程。  相似文献   

9.
In this article, a fault-tolerant voltage source inverter (VSI) is proposed for a novel topology of stand-alone doubly fed induction generator (DFIG) feeding an isolated DC load. In this topology, stator and rotor sides of DFIG are connected to DC-bus through a diode rectifier and VSI, respectively. The fault-tolerant VSI includes a redundant leg connected by bidirectional switches in order to replace the faulted leg and improve the reliability of the proposed system. The field oriented control strategy is adopted to control the d and q-axis rotor currents in order to maintain the voltage and the frequency at the output of the generator constant. A novel, easy and fast approach for fault detection and isolation (FDI) of open-switch damage in insulated gate bipolar transistor-based VSI is proposed in this study. This approach is developed using mathematical transformations such as a hysteresis detector, an integrator and a trigger. The FDI algorithm proposed here does not require the knowledge of the system model and is independent from its complexity. Simulations results are illustrated for a 3.7 kW DFIG feeding a DC load with open-switch fault in VSI that confirm the concepts proposed in this study.  相似文献   

10.
A novel single-stage full-bridge series-resonant buck-boost inverter (FB-SRBBI) is proposed in this paper. The proposed inverter only includes a full-bridge topology and a LC resonant tank without auxiliary switches. The output voltage of the proposed inverter can be larger or lower than the dc input voltage, depending on the instantaneous duty-cycle. This property is not found in the classical voltage source inverter, which produces an ac output instantaneous voltage always lower than the dc input voltage. The proposed inverter circuit topology provides the main switch for turn-on at ZCS by a resonant tank. The nonlinear control strategy is designed against the input dc perturbation and achieves well dynamic regulation. An average approach is employed to analyze the system. A design example of 500 W dc/ac inverter is examined to assess the inverter performance and it provides high power efficiency above 90% under the rated power.  相似文献   

11.
本文介绍了如何使用普传PI7100变频器的主板端子功能、制动功能及保护功能实现变压器绕线机系统的自动调速控制的工艺要求。着重介绍控制系统如何设计及其工作过程,变频器常见故障及排除措施。  相似文献   

12.
This paper is an attempt to synthesize the direct torque and rotor flux control (DTRFC) algorithms of induction motor using sliding-mode theory. The choice of the sliding-mode theory has been motivated by the presence of switches in the voltage-source inverter (VSI). Changes in the state of the switches cause the variation in the topology of the controlled system. In addition, this theory offers a mathematical process that allows rigorous procedures of analysis and synthesis. The developed voltage vector is generated by two methods: direct control of the VSI (hysteresis VSI control), and indirect control of the VSI using space-vector modulation. In addition, taking into account the complementarity of the advantages of each VSI control algorithm, the high dynamic performance of the direct control and the smoothness of the indirect control, the idea of the dynamic reconfiguration of DTRFC algorithms is proposed.  相似文献   

13.
The theory of vector control is applied to the nonlinear model of a permanent magnet synchronous motor to develop a linear model for controller design purposes. The operation and relevant mathematics of a pseudo-derivative feedback controller are presented. Controller designs for three different speeds are then considered, and a comparative evaluation is made on the basis of their large and small-signal behavior. In order to test the large-signal response, the detailed nonlinear model of the machine and a real-time model of the inverter switches are used. Results indicate that a critically damped design done so as to ensure that all control and power signals never saturate gives an extremely poor result. Much better small and large-signal responses are achieved by avoiding this constraint and using Zener diodes instead to limit the commanded input into the inverter. Two designs using this technique are presented, an underdamped design with low speed overshoot and an overdamped design with no speed overshoot. The response of the underdamped design was much quicker than that of the overdamped. However the overdamped design has application when speed overshoot is intolerable  相似文献   

14.
This paper investigates the use of fuzzy logic for fault detection and diagnosis in a pulsewidth modulation voltage source inverter (PWM-VSI) induction motor drive. The proposed fuzzy technique requires the measurement of the output inverter currents to detect intermittent loss of firing pulses in the inverter power switches. For diagnosis purposes, a localization domain made with seven patterns is built with the stator Concordia current vector. One is dedicated to the healthy domain and the six others to each inverter power switch. The fuzzy bases of the proposed technique are extracted from the current analysis of the fault modes in the PWM-VSI. Experimental results on a 1.5-kW induction motor drive are presented to demonstrate the effectiveness of the proposed fuzzy approach.  相似文献   

15.
Since variable speed electric drive systems are supplied from power electronic converters, it is possible to utilize ac machines with a phase number higher than three. It is shown in the paper, using general theory of electrical machines, that an increase of the stator phase number to at least five (or more) enables completely independent vector control of two (or more) multiphase machines that are supplied from a single current-controlled voltage source inverter. In order to achieve such an independent control it is necessary to connect multiphase stator windings of the machines in series and perform an appropriate phase sequence transposition. The concept is equally applicable to any multiphase ac machine type and its major advantage, compared to an equivalent multimotor three-phase drive system, is the saving of a certain number of inverter legs. The actual saving depends on the number of phases. The concept is introduced using an n-phase induction machine as the starting point and further analysis is restricted to an odd number of phases, for the reason explained in the paper. Classification of all the possible cases that may arise is given, followed by presentation of connection diagrams for selected phase numbers. Detailed verification of the proposed concept is provided by simulating the operation of a seven-phase three-motor drive system, controlled using indirect rotor flux oriented control principles. Some preliminary experimental results, which confirm the feasibility of a two-motor series-connected drive system, are included as well. The main advantages and drawbacks of the concept, when compared with an equivalent three-phase multimotor drive system, are finally addressed.  相似文献   

16.
The performance of a five-phase permanent-magnet (PM) motor is analyzed under postfault conditions. Proper current control strategies are adopted so as to guarantee safe drive operation after any fault occurrence. This paper covers three fault types: the open circuit condition of a single phase, the open circuit condition of two nonadjacent phases, and the open circuit condition of two adjacent phases. Two motors with two different windings (with double and single layers, respectively) are compared under each fault type. This paper aims to highlight the difference in the motor performance of motors adopting these two different windings. A further novelty of this paper is that the proper current control strategies are derived analytically, including not only the fundamental harmonic of the flux-density distribution but also the higher harmonics. It is shown that these harmonics cause high torque oscillations. Owing to this analytical approach, the strategy can be applied to a variety of PM motors. In addition, the postfault current waveforms remain sinusoidal, making the current control easier. For each fault type, the results of both simulations and experimental tests are included. A good match between analytical predictions and experimental tests validates the proposed current control strategies.  相似文献   

17.
Most existing three-phase soft-switching inverters with fewer than six auxiliary switches have fundamental drawbacks in performance. There exist a few soft-switching inverters with six auxiliary switches that can potentially achieve desirable performance, but are penalized with the high cost and large size associated with the auxiliary switches. This paper proposes a zero-current-transition (ZCT) inverter topology that requires only three auxiliary switches. Each phase of the proposed circuit employs one auxiliary switch and one LC resonant tank to assist switching transitions. With considerable reduction in device count, cost, and size, the proposed topology realizes zero-current turn-off for all main switches and auxiliary switches, and provides soft commutation for all diodes. Meanwhile, it requires no modification to normal pulsewidth modulated (PWM) algorithms. The operation principles, design and control guidelines, and an analysis using the state-plane technique are presented. Based on the proposed topology, a 50-kW three-phase prototype inverter has been developed for electric vehicle propulsions, and tested to the full power level with a closed-loop induction motor drive system. Experimental results on the 50-kW prototype are provided to verify the proposed concept in high-power AC adjustable speed drive applications.  相似文献   

18.
This paper presents a new topology for the power injection system that is based on the parallel association of two voltage source inverters. One operates using a quasi-square voltage waveform strategy, and the other operates with a pulsewidth-modulation (PWM)-based strategy. The aims of this topology are to inject the power from the photovoltaic generation system using the quasi-square inverter and to control the current quality using the PWM inverter. The proposal optimizes the system design, permitting the reduction of system losses and an increase of the energy injected into the grid.  相似文献   

19.
Flying capacitor multilevel inverters and DTC motor drive applications   总被引:1,自引:0,他引:1  
In this paper, the requirements imposed by a direct torque control (DTC) strategy on multilevel inverters are analyzed. A control strategy is proposed in order to fulfill those requirements when a flying-capacitor multilevel inverter is used. Simulation and practical results will confirm the performance of the proposed strategy when using the multilevel inverter to control an induction motor by the DTC principle. Also, the advantages of using a multilevel inverter with a DTC strategy are shown by simulation results.  相似文献   

20.
In this paper, a new method for filtering the torque pulsations is proposed for double-star permanent magnet synchronous machines under fault conditions. The machine is supplied by two independent electric sources via two voltage source inverters. The proposed method deals with the case where an open-circuit fault occurs. To reduce the torque pulsations, the usual solution consists in supplying only the healthy star winding. Here, we propose to supply not only the healthy winding, but also the two remaining phases of the other star winding by the healthy legs of the faulty inverter. The stator current waveforms can be easily determined to minimize the copper losses while reducing the torque pulsations. Simulation and experimental results confirm the efficiency of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号