首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
X-ray diffraction data are presented for combustion products in the Al-W-N system. New, nonequilibrium intermetallic compounds have been identified, their diffraction patterns have been indexed, and their unit-cell parameters have been determined. The phases α-and β-WAl4 are shown to exist in three isomorphous forms, differing in unit-cell centering. The phases α′-, α″-, and α?-WAl4 are monoclinic, with a 0 = 5.272 Å, b 0 = 17.770 Å, c 0 = 5.218 Å, β = 100.10°; point groups C12/c1, A12/n1, I12/a1, respectively. The phases β′-, β″-, and β?-WAl4 are monoclinic, with a 0 = 5.465 Å, b 0 = 12.814 Å, c 0 = 5.428 Å, β = 105.92°; point groups A112/m, B112/m, I112/m, respectively. The compounds WAl2 and W3Al7, identified each in two isomorphous forms, differ in cell metrics (doubling) but possess the same point group: P222. WAl 2 : orthorhombic, a 0 = 5.793 Å, b 0 = 3.740 Å, c 0 = 6.852 Å. WAl 2 : orthorhombic, a 0 = 11.586 Å, b 0 = 3.740 Å, c 0 = 6.852 Å. W3Al 7 : orthorhombic, Pmm2, a 0 = 6.225 Å, b 0 = 4.806 Å, c 0 = 4.437 Å. W3Al 7 : orthorhombic, Pmm2, a 0 = 12.500 Å, b 0 = 4.806 Å, c 0 = 8.874 Å. The new phase WAl3: triclinic, P1, a 0 = 8.642 Å, b 0 = 10.872 Å, c 0 = 5.478 Å, α = 104.02°, β = 64.90°, γ = 107.15°.  相似文献   

2.
Mn2SnTe4 was synthesized by direct fusion using the anneal method. X-ray powder diffraction analysis indicated that this material crystallizes in the olivine-type structure, space group Pnma, Z = 4, with unit cell parameters: a = 14.020(2) Å, b = 8.147(1) Å, c = 6.607(1) Å, V = 754.7(2) Å3. The Rietveld refinement converged to the figures of merit, R p = 6.9%, R wp = 8.5%, R exp = 6.0%, χ2 = 2.0 and S = 1.4.  相似文献   

3.
Samples of the quaternary chalcogenide compounds, CuNiGaSe3 and CuNiInSe3, prepared by direct fusion and annealing method, were characterized by X-ray powder diffraction. In each case, the crystal structure was refined using the Rietveld method. Both compounds were found to crystallize in the tetragonal system, space group P \(\bar 4\)2c (N°112), with unit cell parameter values a = 5.6213(1) Å, c = 11.0282(3) Å, V = 348.48(1) Å3 and a = 5.7857(2) Å, c = 11.6287(5) Å, V = 389.26(3) Å3 for CuNiGaSe3 and CuNiInSe3, respectively. These compounds have a normal adamantane structures and are isostructural with CuFeInSe3.  相似文献   

4.
Thermal deformations of Na6(UO2)2O(MoO4)4 were studied by high-temperature powder X-ray diffraction. The compound crystallizes in the triclinic system, space group Р\(\bar 1\), a = 7.636(7), b = 8.163(6), c = 8.746(4) Å, α = 72.32(9)°, β = 79.36(4)°, γ = 65.79(5)°, V = 472.74(4) Å3. It is stable in the temperature interval 20–700°С. The thermal expansion coefficients (TECs) are α11 = 25.5 × 10–6, α22 = 7.8 × 10–6, and α33 = 1.1 × 10–6 (°C)–1. The orientation of the TEC pattern relative to the crystallographic axes is a33^Z = 45°, a33^X = 122°, a22^Z = 59°, and a22^X = 66°. The anisotropy of the thermal expansion is due to specific features of the crystal structure of the compound.  相似文献   

5.
The compound (NH4)3[UO2(CH3COO)3]2(NCS) (I) was synthesized and examined by single crystal X-ray diffraction analysis. The compound crystallizes in the rhombic system with the unit cell parameters a = 11.5546(4), b = 18.5548(7), c = 6.7222(3) Å, V = 1441.19(10) Å3, space group P21212, Z = 2, R = 0.0345. The uranium-containing structural units of crystals of I are isolated mononuclear groups [UO2(CH3COO)3]? belonging to crystal-chemical group AB 3 01 (A = UO 2 2+ , B01 = CH3COO?) of uranyl complexes. The specific features of packing of the uranium-containing complexes in the crystal structure are considered.  相似文献   

6.
The crystal and molecular structures of [TcCl(CO)5] and [TcBr(CO)5] were determined. The compounds crystallize in the rhombic system, space group Pnma; a = 11.6757(18) and 11.9564(18) Å, b = 11.7365(14) and 11.7250(18) Å, c = 6.0407(7) and 6.2020(15) Å, V = 827.77(19) and 869.5(3) Å3, respectively; Z = 4. The structural data for pentacarbonyl halides were compared in the series Mn-Tc-Re and Cl-Br-I. Quantum-chemical calculations of the compounds [TcX(CO)5] (X = F, Cl, Br, I) and of the anion [TcCl3(CO)3]2? were made. A correlation between the geometry, electronic structure, and reactivity of the complexes is considered.  相似文献   

7.
K0.57(NH4) 0.43CdCl3 and K0.25(NH4) 0.75CdCl3 are orthorhombic, space group Pnma, Z = 4, with a = 8.8760(4) Å, b = 3.9941(2) Å, c = 14.7004(7) Å, and Z = 4, a = 8.9567(9) Å, b = 3.9957(4) Å, c = 14.855 (2) Å, respectively. Final R values are 0.01 and 0.02 for 608 and 834 reflections, respectively. In both the materials, the crystal structure has been determined by X-ray single crystal analysis at room temperature (293 K). The compound structures consist of K+ (or NH\(_{{4}}^{{+}})\) cations and double chains of CdCl6 octahedra sharing one edge extending along b-axis. The mixture of K+/NH\(_{{4}}^{{+}}\) cations are located between the double chains ensuring the stability of the structure by ionic and hydrogen bonding contacts N/K–H …Cl. Spectroscopic, dielectric and differential scanning calorimetry (DSC) measurements were performed to discuss the mechanism of the phase transition. These studies show that these materials, K0.57(NH4)0.43CdCl3and K0.25(NH4)0.75CdCl3, undergo a phase transition at 438 and 454 K, respectively.  相似文献   

8.
The crystal structure of a previously unknown compound [CH3NH3][(UO2)(H2AsO4)3] was solved by direct methods and refined to R 1 = 0.038 for 3041 reflections with |F hkl | >-4σ |F hkl |. The compound crystallizes in the monoclinic system, space group P21/c, a = 8.980(1), b = 21.767(2), c = 7.867(1) Å, β = 115.919(5)°, V = 1383.1(3) Å3, Z = 4. In the structure of the compound, pentagonal bipyramids of uranyl ions, sharing bridging atoms with tetrahedral [H2AsO4]? anions, form strongly corrugated layered complexes [(UO2)(H2AsO4)3]? arranged parallel to the (100) plane. The protonated methylamine molecules [CH3NH3]+ form unidimensional tapelike packings parallel to the c axis and linked by hydrophilic-hydro-phobic interactions. The topology of the layered uranyl arsenate complex [(UO2)(H2AsO4)3]? is unusual for uranyl compounds and was not observed previously. A specific feature of this topology is the presence of monodentate arsenate “branches” arranged within the layer.  相似文献   

9.
The crystal structure of a previously unknown compound KNa3[(UO2)5O6(SO4)] [space group Pbca, a = 13.2855(15), b = 13.7258(18), c = 19.712(2) Å, V = 3594.6(7) Å3] was solved by direct methods and refined to R 1 = 0.055 for 3022 reflections with |F hkl | ≥ 4σ |F hkl |. In the structure there are five sym-metrically nonequivalent uranyl cations. They are linked by cationcation (CC) interactions to form a pentamer whose central cation is U(2)O 2 2+ forming two three-centered CC bonds. All the uranyl ions are coordinated in the equatorial plane by five O atoms, which leads to the formation of pentagonal bipyramids sharing common edges to form layers parallel to the (100) plane. The sulfate tetrahedron links the uranyl layers into a 3D framework. The K+ and Na+ cations are arranged in framework voids. A brief review of CC interactions in U(VI) compounds is presented.  相似文献   

10.
The crystal and molecular structures of tricarbonyltechnetium acetylacetonate and its adduct with diethylamine were studied by single crystal X-ray diffraction. Tricarbonyltechnetium acetylacetonate crystallizes in the triclinic system, space group \(P\bar 1\), a = 8.1154(1), b = 8.1961(2), c = 8.2695(1) Å, α = 64.5618(9)°, β = 69.7899(8)°, γ = 83.6925(9)°, V = 465.652(14) Å3 (at 100 K); Z = 2. The adduct also crystallizes in the triclinic system, space group P{ie145-2}, a = 7.9338(3), b = 8.5421(3), c = 12.1506(7) Å, α = 96.961(3)°, β = 99.952(3)°, γ = 112.001(2)°, V = 736.25(6) Å3 (at 100 K); Z = 2. Tricarbonyltechnetium acetylacetonate has a centrosymmetrical dimeric structure. The dimerization occurs through the formation of a bridging bond with the methine carbon atom of the acetylacetonate ligand which is thus coordinated in the tridentate chelating-bridging fashion. The adduct has a monomeric structure with chelating coordination of the acetylacetonate ligand and coordination of diethylamine to the technetium atom via N atom. In both complexes, the carbonyl groups are in the fac position. Differences between the structures of tricarbonyltechnetium acetylacetonate in the crystal and in solution are discussed.  相似文献   

11.
In this paper polyhalogen-chalcogen Br2SeIBr was synthesized and the crystal structure was determined by single crystal X-ray diffraction method. This compound was prepared in the temperature range 150–50°C which was brownish-red in colour and crystallized in monoclinic crystal system and space groupP21/c with four molecules per unit cell. Lattice parameters were:a = 6.3711(1),b = 6.7522(2),c = 16.8850(5) Å, α = γ = 90°, β = 95.96°, ν = 722.45 Å3.  相似文献   

12.
Single crystals of four Ln2TiO5 polymorphs have been grown, and their structures have been determined: orthorhombic (Gd2TiO5, a = 10.460(5), b = 11.317(6), c = 3.750(3) Å, Pnam, Z = 4), hexagonal (Gd1.8Lu0.2TiO5, a = 3.663(3), c = 11.98(1) Å, P63/mmc, Z = 1.2), cubic (Dy2TiO5, a = 10.28(1) Å, Fd3m, Z = 10.4), and monoclinic (Dy2TiO5, a = 10.33(1), b = 3.653(5), c = 7.306(6) Å, β = 90.00(7)°, B2/m, Z = 2.4). The last polymorph has been identified for the first time.  相似文献   

13.
We report an easy and versatile route for the synthesis of the parent phase of the newest superconducting wonder material, i.e., p-terphenyl. Doped p-terphenyl has recently shown superconductivity with transition temperature as high as 120 K. For crystal growth, the commercially available p-terphenyl powder is pelletized, encapsulated in an evacuated (10?4 Torr) quartz tube and subjected to high-temperature (260 °C) melt followed by slow cooling at 5 °C/h. A simple temperature-controlled heating furnace is used during the process. The obtained crystal is one piece, shiny, and plate like. Single crystal surface XRD (X-ray diffraction) showed unidirectional (00l) lines, indicating that the crystal is grown along the c-direction. Powder XRD of the specimen showed that as grown p-terphenyl is crystallized in monoclinic structure with space group P2 1/a space group, having lattice parameters a = 7.672 (2) Å, b = 5.772 (5) Å, and c = 13.526(3) Å and β = 91.484 (3)°. Scanning electron microscopy (SEM) pictures of the crystal showed clear layered slab-like growth without any visible contamination from oxygen. Characteristic reported Raman active modes related to C–C–C bending, C–H bending, C–C stretching, and C–H stretching vibrations are seen clearly for the studied p-terphenyl crystal. The physical properties of the crystal are yet underway. The short letter reports an easy and versatile crystal growth method for obtaining quality p-terphenyl. The same growth method may probably be applied to doped p-terphenyl and to subsequently achieve superconductivity to the tune of as high 120 K for the newest superconductivity wonder, i.e., high- T c organic superconductor (HTOS).  相似文献   

14.
The phase equilibria in the pseudoternary systems CuSbS2-MS (M = Pb, Eu, Yb) have been studied, and their phase diagrams have been mapped out. The systems contain MCuSbS3 sulfides with an orthorhombic lattice, isostructural with the mineral bournonite (sp. gr. Pmn21, Z = 4). PbCuSbS3: a = 8.162, b = 8.71, c = 7.81 Å; EuCuSbS3: a = 8.156, b = 8.682, c = 7.786 Å; YbCuSbS3: a = 8.150, b = 8.664, c = 7.78 Å.  相似文献   

15.
The crystal structure of 3, 3′-dimethoxybiphenyl has been determined by X-ray diffraction methods with an aim of describing the hydrogen interaction in biphenyl derivatives. The title compound crystallizes in monoclinic space groupP21/c with unit cell dimensions,a = 7.706(1),b = 11.745(2),c = 12.721(2) Å, β = 92.31(1)°,Z = 4 and its structure has been refined up to the reliability index of 3.8%. The average torsion angle about the inter-ring C-C bond is 37.5°. The O1 and Ol′ atoms of the methoxy group are deviated by 0.046(1) Å and 0.234(1) Å from the mean planes of respective rings. The crystal cohesion is pronounced due to three-inter-molecular C-H...O hydrogen bonds.  相似文献   

16.
Crystal and molecular structures of adducts of uranyl pivaloyltrifluoroacetonate with hexamethylphosphoramide [UO2(PTFA)2(HMPA)] (I) and of uranyl trifluoroacetylacetonate with trimethyl phosphate [UO2(TFA)2(TMP)] (II) were determined. Compound I crystallizes in the monoclinic system, space group P21/n; a = 16.9384(3), b = 9.1090(2), c = 20.9844(4) Å, β = 101.5337(10)°, V = 3172.34(11) Å3 (at 100 K); Z = 4. Compound II crystallizes in the rhombic system, space group Pbca; a = 17.8214(4), b = 7.7786(2), c = 30.9176(7) Å, V = 4285.97(18) Å3 (at 100 K); Z = 8. In both cases, the cis isomer in which the neutral ligand is located between the trifluoromethyl groups is realized. Compound I differing from II by the stronger branching of ligand periphery is characterized by stronger structural deformations in the crystal.  相似文献   

17.
The CuAsS2-PbS, CuAsS2-EuS, and CuAsS2-YbS systems have been studied for the first time and their phase diagrams have been mapped out. We have identified the MCuAsS3 (M — Pb, Eu, Yb) compounds (seligmannite structure, Z = 4, sp. gr. Pmn21) and determined their lattice parameters: a = 8.125, b = 8.748, c = 7.644 Å (PbCuAsS3); a = 8.04, b = 8.66, c = 7.60 Å (EuCuAsS3); a = 8.00, b = 8.62, c = 7.54 Å (YbCuAsS3).  相似文献   

18.
Two new U(VI) compounds, [((CH3)2CHNH3)(CH3NH3)][(UO2)2(CrO4)3] (1) and [CH3NH3][(UO2)· (SO4)(OH)] (2), were prepared by combining hydrothermal synthesis with isothermal evaporation. Compound 1 crystallizes in the monoclinic system, space group Р21, a = 9.3335(19), b = 10.641(2), c = 9.436(2) Å, β = 94.040(4)°. Compound 2 crystallizes in the rhombic system, space group Рbca, a = 11.5951(8), b = 9.2848(6), c = 14.5565(9) Å. The structures of the compounds were solved by the direct methods and refined to R1 = 0.041 [for 5565 reflections with Fo > 4σ(Fo)] and 0.033 [for 1792 reflections with Fo > 4σ(Fo)] for 1 and 2, respectively. Single crystal measurements were performed at 296 and 100 K for 1 and 2, respectively. The crystal structure of 1 is based on [(UO2)2(CrO4)3]2– layers, and that of 2, on [(UO2)(SO4)(OH)] layers. Both kinds of layers are constructed in accordance with a common principle and are topologically similar. Protonated isopropylamine and methylamine molecules are arranged between the layers in 1, and protonated methylamine molecules, in 2. Compound 1 is the second known example of a U(VI) compound templated with two different organic molecules simultaneously.  相似文献   

19.
As a newly discovered member of the tungstate family, InWO4 hollow nanospheres with a monoclinic wolframite structure were synthesized successfully. The crystal phase of InWO4 was investigated via a combination of CASTEP geometric optimization and experimental simulation. InWO4 has a space group of P2/c with two InWO4 formula units per unit cell. The optimized cell dimensions are a = 5.16 Å, b = 5.97 Å, and c = 5.23 Å, with α = 90°, β = 92.11°, γ = 90°, giving a unit cell volume of 161.10 Å3, which is consistent with the experimental measurements. More importantly, InWO4 was a promising host material for different Ln3+ (Ln = Eu and Yb/Er) ions. For InWO4:Yb3+/Er3+ excited at 980 nm, transitions from the 4G11/2 (384 nm), 2H9/2 (411 nm), and 4F7/2 (487 nm) levels to the ground state (4I15/2) of Er3+ were observed. In addition to the aforementioned properties, the InWO4 hollow nanospheres can be used to improve the performance of dye-sensitized solar cells, which is chiefly attributed to theirlight scattering.
  相似文献   

20.
Rare-earth analogs of the mineral bournonite, PbCuSbS3, have been synthesized for the first time and their physicochemical properties have been studied. PbCuSbS3, EuCuSbS3, YbCuSbS3, PbCuLaS3, and PbCuNdS3 are isostructural with each other and crystallize in orthorhombic symmetry with the following unit-cell parameters: a = 8.176, b = 8.660, c = 7.796 Å (PbCuSbS3); a = 8.156, b = 8.68, c = 7.786 Å (EuCuSbS3); a = 8.15, b = 8.64, c = 7.76 Å (YbCuSbS3); a = 8.26, b = 8.84, c = 7.96 Å (PbCuLaS3); a = 8.20, b = 8.80, c = 7.92 Å (PbCuNdS3) (Z = 4, sp. gr. Pmn21).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号