首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inviscid free-surface flow due to an impulsive bottom flux on constant depth is investigated analytically and numerically. The following classes of two-dimensional flow are considered: an upwelling flow which is uniform over a half-plane, a line source/sink, and a dipole aligned along the bottom. The bottom flux is turned on impulsively and may decay with time. The fully nonlinear problem is solved numerically. A small-time asymptotic expansion to third order is found for the nonlinear problem. An asymptotic large-time solution is found for the linearized problem. A steady source will generate a pair of symmetric bores, and their breaking is investigated. A steady sink generates a depression wave if it is weak, and dip instability if it is strong. Wave breaking will occur for intermediate sink strengths. A decaying source emits solitary waves.  相似文献   

2.
We consider the fluid flow induced when free-surface travelling waves, on fluid whose depth is finite and uniform in its undisturbed state, pass over a submerged circular cylinder. The wave amplitude is assumed to be small, and a suitably defined Reynolds number large. Thus, the inviscid flow may be pursued by perturbation methods, as may viscous effects that are confined to thin boundary layers on the cylinder and bed beneath it. Particular attention is focused on the steady streaming motion, which induces a circulation about the cylinder. The consequences of this on bed scouring beneath the cylinder, when the bed is erodible, are considered.  相似文献   

3.
In this paper, processes in the early stages of vortex motion and the development of flow structure behind an impulsively-started circular cylinder at high Reynolds number are investigated by combining the discrete vortex model with boundary layer theory, considering the separation of incoming flow boundary layer and rear shear layer in the recirculating flow region. The development of flow structure and vortex motion, particularly the formation and development of secondary vortex and a pair of secondary vortices and their effect on the flow field are calculated. The results clearly show that the flow structure and vortices motion went through a series of complicated processes before the symmetric main vortices change into asymmetric: development of main vortices induces secondary vortices; growth of the secondary vortices causes the main vortex sheets to break off and causes the symmetric main vortices to become “free” vortices, while a pair of secondary vortices is formed; then the vortex sheets, after breaking off, gradually extend downstream and the structure of a pair of secondary vortices becomes relaxed. These features of vortex motion look very much like the observed features in some available flow field visualizations. The action of the secondary vortices causes the main vortex sheets to break off and converts the main vortices into free vortices. This should be the immediate cause leading to the instability of the motion of the symmetric main vortices. The flow field structure such as the separation position of boundary layer and rear shear layer, the unsteady pressure distributions and the drag coefficient are calculated. Comparison with other results or experiments is also made. This work was presented at the First Asian Congress of Fluid Mechanics, Bangalore in December 1980.  相似文献   

4.
采用大涡模拟方法,研究斜置圆柱在展向剪切流作用下的气动性能。研究了不同剪切流强度对斜置圆柱的表面风压、Strouhal数、气动力时程及其功率谱、气动力展向相关性等气动性能的影响,并探讨了剪切流对斜圆柱气动性能的作用机理。结果表明:在均匀流作用下,斜置圆柱尾流区会产生强烈的轴向流,卡门涡脱强度大大减弱;展向剪切流对斜置圆柱的表面风压和气动力等气动性能有较大影响;展向剪切流会破坏轴向流在斜置圆柱尾流区的形成,并且当剪切流的剪切系数足够大时,可完全阻止轴向流的出现,从而减弱或消除了抑制卡门涡脱的因素,恢复了斜置圆柱的卡门涡脱强度。  相似文献   

5.
In Lagrangian particle-based methods such as smoothed particle hydrodynamics (SPH), computing totally divergence-free velocity field in a flow domain with the smallest error possible is the most critical issue, which might be achieved through solving pressure Poisson equation implicitly with higher particle resolutions. However, implicit solutions are computationally expensive and may be particularly challenging in the solution of multiphase flows with highly nonlinear deformations as well as fluid-structure interaction problems. Augmented Lagrangian SPH (ALSPH) method is a new alternative algorithm as a prevalent pressure solver where the divergence-free velocity field is achieved by iterative calculation of velocity and pressure fields. This study investigates the performance of the ALSPH technique by solving a challenging flow problem such as two-dimensional flow around a cylinder within the Reynolds number range of 50 to 500 in terms of improved robustness, accuracy, and computational efficiency. The same flow conditions are also simulated using the conventional weakly compressible SPH (WCSPH) method. The results of ALSPH and WCSPH solutions are not only compared in terms of numerical validation/ verification studies, but also rigorous investigations are performed for all related physical flow characteristics, namely, hydrodynamic coefficients, frequency domain analyses, and velocity divergence fields.  相似文献   

6.
《Advanced Powder Technology》2020,31(10):4166-4179
This paper presents a study of gas-solid flow in a novel cyclone separator with inner cylinder, compared with that in a conventional cyclone. The Reynolds stress model (RSM) is used to simulate fluid flow, and the discrete phase model (DPM) is selected to describe the motion behavior of particles. The experimental data measured by particle image velocimetry (PIV) is used to verify the reliability of the numerical model. The results show that in the novel cyclone, the cleaned gas can be quickly discharged from the vortex finder, the movement distance and residence time of fine particles are prolonged, the short-circuit flow and vertical vortex under the vortex finder are eliminated, the mutual interference between upflow and downflow in the cylinder is eliminated, and the region of quasi-free vortex in the cone is enlarged. Compared with the conventional cyclone, the novel cyclone has higher collection efficiency and lower pressure drop.  相似文献   

7.
The steady two-dimensioanl potential flow of a finite-depth fluid into an extended or distributed sink, in which the free surface dips to form a cusp above the centre of the sink, is examined. The extended sink is a region where the vertical outflow velocity V is constant and uniform. Numerical solutions for the free-surface profiles are obtained by use of a boundary-integral technique. Solutions are only found for the supercritical case where the Froude numbers are greater than one. In the limiting case where the extended sink width tends to zero, the problem reduces to that of a line sink beneath the free surface, and comparisons are made to existing results for this type of flow.  相似文献   

8.
The problem of scattering of water waves obliquely incident on a fixed long circular cylinder half-immersed in deep water with an ice-cover is investigated here. The ice-cover is modelled as an elastic plate of very small thickness. The problem is formulated using the method of multipoles. This leads to an infinite system of linear equations which are solved numerically by truncation. The reflection and transmission coefficients are obtained and depicted graphically against the wave number for various values of the angle of incidence and flexural rigidity of the ice-cover to show the effect of the presence of ice-cover on these quantities. The effect of ice-cover is seen to increase the reflection coefficient and to decrease the transmission coefficient.  相似文献   

9.
突风(平均风速随时间快速变化)作用在结构或构件上时,结构的气动力和振动状态与平稳风作用下的结果有何不同,是值得研究的问题。在风洞实验室,利用电压控制的方法,实现了具有一定风速加速度的突升和突降的风速变化过程,测试了圆柱结构在突变风速平稳风速作用下的气动力和振动状态,试验结果表明:当突升风速作用在模型上时,采用瞬时风速和气动力算得的力系数和在平稳风速下的结果一致;当突降风速作用在模型上时,采用瞬时风速和气动力算得的力系数虽然在大小上和在平稳风速下的结果一致,但是其对应的临界雷诺数范围比平稳风速对应的临界雷诺数范围,整体向小的方向上偏移了一定的量值。当不涉及到临界雷诺数时,本文的突变风速不会激发模型的大幅振动;当风速升至或降至临界雷诺数区域时,模型将发生稳定的大幅振动;当风速经过临界雷诺数时,在临界雷诺数对应的风速下发生大幅振动,随着风速的升高或降低使得对应的雷诺数离开临界区域时,振动逐渐消失  相似文献   

10.
Flow fields from transversely oscillating circular cylinders in water at rest are studied by numerical solutions of the two‐dimensional unsteady incompressible Navier–Stokes equations adopting a primitive‐variable formulation. These findings are successfully compared with experimental observations. The cell viscous boundary element scheme developed is first validated to examine convergence of solution and the influence of discretization within the numerical scheme of study before the comparisons are undertaken. A hybrid approach utilising boundary element and finite element methods is adopted in the cell viscous boundary element method. That is, cell equations are generated using the principles of a boundary element method with global equations derived following the procedures of finite element methods. The influence of key parameters, i.e. Reynolds number Re, Keulegan–Carpenter number KC and Stokes' number β, on overall flow characteristics and vortex shedding mechanisms are investigated through comparisons with experimental findings and theoretical predictions. The latter extends the study into assessment of the values of the drag coefficient, added mass or inertia coefficient with key parameters and the variation of lift and in‐line force results with time derived from the Morison's equation. The cell viscous boundary element method as described herein is shown to produce solutions which agree very favourably with experimental observations, measurements and other theoretical findings. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
The water flow is studied when a thin body, part-submerged in originally still water, is plunged vertically downward. The rapid motion is at medium-to-large Reynolds number. The flow structure consists mainly of two viscous nonlinear layers, namely the unsteady boundary layer on the plunging body and unsteady wake along the trailing free surface, and one inviscid linear region in the bulk of the water. The former produce unsteady displacements which force the motion in the inviscid bulk, along with mixed boundary conditions, and control the evolutions of the wake-side and upper free surfaces. Other regions present are also considered. Analytical and numerical solutions are described, including the effects of the high Froude number and of contact slippage, and the time to bubble formation on the body.  相似文献   

12.
The effects of an elastic membrane on the viscous oscillations of liquid filling a circular cylindrical container are studied by using the natural viscous complex eigenfunctions of the problem. The free surface of the liquid is assumed to be fully covered by the membrane. By projecting the governing equations onto an appropriate basis, a nonlinear eigenvalue problem for the complex frequencies is obtained. This is then solved to obtain the modal frequencies as a function of the Reynolds number Re, the tension parameter τ, the mass parameter ζ and the liquid depth h. The zero velocity conditions on both the side and bottom walls are satisfied unlike in earlier studies where either only the sidewall or only the bottom wall conditions were met. Results are presented for the four lowest non-axisymmetric modes as a function of Re, h, τ and ζ. The elastic cover increases the slosh frequencies but only in comparison with an uncovered free surface with a contact line that is free to move; the frequencies are lower when compared with those of a free surface with pinned contact line. There are ranges of Re, h, τ and ζ for which the oscillations are overdamped and the sloshing is aperiodic. Though the frequencies and damping rates decrease for an increasing mass of the elastic cover, there exist ranges of Re, h and τ for which the heavier cover produces higher slosh frequencies.  相似文献   

13.
In a two-layer fluid wherein the upper layer is of finite depth and bounded above by a thin but uniform layer of ice-cover modelled as a thin elastic sheet and the lower layer is infinitely deep below the interface, time-harmonic waves with a given frequency can propagate with two different wavenumbers. The wave of smaller wavenumber propagates along the ice-cover while wave of higher wavenumber propagates along the interface. In this paper problems of wave scattering by a horizontal circular cylinder submerged in either the lower or in the upper layer due to obliquely as well as normally incident wave trains of both the wave numbers are investigated by using the method of multipole expansions. The effect of the presence of ice-cover on the various reflection and transmission coefficients due to incident waves at the ice-cover and the interface is depicted graphically in a number of figures.  相似文献   

14.
Functionally graded materials (FGMs) enable one to tailor the spatial variation of material properties so as to fully use the material everywhere. For example, in a hollow circular cylinder one can vary, in the radial direction, the material moduli to make the hoop stress constant. Whereas the problem for a hollow cylinder with the inner and the outer surfaces circular has been studied, that of a cylinder with a circular outer surface and a non-circular inner surface or vice versa has not been investigated. We study here such a plane-strain problem when the cylinder material is polar-orthotropic, material properties vary exponentially in the radial direction, and deformations are independent of the axial coordinate. The problem is challenging since the cylinder thickness varies with the angular position of a point, and the cylinder material is inhomogeneous. Equilibrium equations are solved by expanding the radial and the circumferential displacements in Fourier series in the angular coordinate. The method of Frobenius series is used to solve ordinary differential equations for coefficients of the Fourier series, and boundary conditions are satisfied in the sense of Fourier series. A parametric study has been conducted that delineates effects on stresses of the eccentricity of the ellipse, the material property gradation index and loads applied on boundaries of the cylinder. The analytical solutions presented here will serve as benchmarks for comparing solutions derived by numerical methods.  相似文献   

15.
The generalized differential equations of plastic flow for a material with nonlinear hardening are derived using the Prager kinematic model. An example of numerical analysis for stress variation under elastoplastic deformation of a thin-walled cylinder of a structural carbon steel is given for different elastoplastic material models. Translated from Problemy Prochnosti, No. 3, pp. 58–65, May–June, 2009.  相似文献   

16.
为了研究负压条件下容器内爆炸引起的振动及噪声特性,研制一套34.8 L抽真空爆炸罐装置.实验用单发8号工业雷管作为爆炸源,采用NuBox8016型爆破振动测试仪、SZ4A型噪声振动测试仪分别测试简体振动速度及爆炸噪声声压级,并使用快速傅里叶变换(fast Fourier transform,FFT)以及经验模态分解(e...  相似文献   

17.
In this paper we formulate a mathematical model for a continuum which behaves like an upper convected visco-elastic Maxwell fluid if the stress is above a certain threshold and like a neo-Hookean elastic solid if the stress is below that threshold. The constitutive equations for each phase are derived within the context of the theory of natural configurations and by means of the criterion of the maximization of the rate of dissipation [11]. We then focus on a limiting case in which the continuum becomes an elastic-rigid body. In this limiting case the constitutive relation of the material becomes implicit and, although there is no energy dissipation, it cannot be included in the class of hyperelastic (or Green) bodies. The stress indeed cannot be expressed as a function of the strain. This class of materials was first introduced by Rajagopal in [15] and is the subject of the forthcoming papers [3] and [4].  相似文献   

18.
A collocation method is presented for solving a singular integral equation of the second kind arsing in the slender-body approximation of viscous flow past slender bodies. When the spectral representation of the integral operator is explicitly known, the collocation method is shown to recover the spectrum of the continuous operator. The approximation error is estimated for two discretizations of the integral operator, and convergence is proved. The collocation scheme is validated for several test cases and extended to situations where the spectrum is not explicitly known.  相似文献   

19.
研究带化学表面反应的边界层流动问题导出的一类弱奇异Volterra积分方程的近似解。以一些化学反应的阶数为例求出解在零点的分数阶级数展开式及其■有理逼近。通过将发散积分解释为Hadamard有限部分积分,并借助数值积分方法导出解在无穷远点的带高阶对数项的渐近展开式。实际计算表明,给出的解在零点和无穷远点展开式的联合使用可以在整个半无限区间上高效地求解这类带化学表面反应的边界层流动问题。  相似文献   

20.
Based on numerical solution of the Navier—Stokes equations by the finite-difference method and physical modeling in a wind tunnel of laminar flow along a cylinder with a protruding disk the vortex mechanism of front stabilization and reduction in the drag of blunt bodies is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号