共查询到19条相似文献,搜索用时 62 毫秒
1.
以上海市供水调度中心智能调度运行管理系统为背景,研究智能调度子系统——水量预测系统的建立及运行,建立基于改进型引力搜索算法-最小二乘支持向量机的城市小时级和天级供水量预测模型,并应用于上海市中心城区和郊县各水厂的供水水量预测研究,实现了城市小时级和天级供水水量预测。 相似文献
2.
YAN Bing-yong TIAN Zuo-hua SHI Song-jiao 《高电压技术》2007,33(11):88-93
A novel fault detection and identification(FDI)scheme for HVDC(High Voltage Direct Current Transmission)system was presented.It was based on the unique active disturbance rejection concept,where the HVDC system faults were estimated using an extended states observer(ESO).Firstly,the mathematical model of HVDC system was constructed,where the system states and disturbance were treated as an extended state.An augment HVDC system was established by using the extended state in rectify side and converter side,respectively.Then,a fault diagnosis filter was established to diagnose the HVDC system faults via the ESO theory.The evolution of the extended state in the augment HVDC system can reflect the actual system faults and disturbances,which can be used for the fault diagnosis purpose.A novel feature of this approach is that it can simultaneously detect and identify the shape and magnitude of the HVDC faults and disturbance.Finally,different kinds of HVDC faults were simulated to illustrate the feasibility and effectiveness of the proposed ESO based FDI approach.Compared with the neural network based or support vector machine based FDI approach,the ESO based FDI scheme can reduce the fault detection time dramatically and track the actual system fault accurately.What’s more important,it needs not do complex online calculations and the training of neural network so that it can be applied into practice. 相似文献
3.
配电网重构可以表述为模式识别问题。通过建立配电网的结构模式,并利用基于结构风险最小化原理的支持向量机,提出了一种配电网重构模式识别模型的构造方法。该方法利用支持向量机在解决有限样本、非线性及高维识别中的优势,提高了模型的泛化能力,同时结合配电网的特点利用同胚图建立了配电网的结构模式,解决了建模过程中输出空间难以确定和表达的问题,使模型能够适用于有一定规模的配电网络。算例表明所提出的方法可以在有限样本下取得较好的预测效果。 相似文献
4.
基于支持向量机的配电网重构 总被引:1,自引:7,他引:1
配电网重构可以表述为模式识别问题。通过建立配电网的结构模式,并利用基于结构风险最小化原理的支持向量机,提出了一种配电网重构模式识别模型的构造方法。该方法利用支持向量机在解决有限样本、非线性及高维识别中的优势,提高了模型的泛化能力,同时结合配电网的特点利用同胚图建立了配电网的结构模式,解决了建模过程中输出空间难以确定和表达的问题,使模型能够适用于有一定规模的配电网络。算例表明所提出的方法可以在有限样本下取得较好的预测效果。 相似文献
5.
基于支持向量机回归的光伏发电出力预测 总被引:11,自引:0,他引:11
建立总峰瓦值为30MW的光伏电站数学模型,并且基于保定地区气象资料以及美国国家航空和宇航局(NASA)提供的保定地区太阳辐射数据,模拟得到该光伏发电系统出力数据.分析光伏系统出力特性以及影响光伏出力因素.根据影响光伏出力的诸多因子的复杂性和非线性,决定预报因子与预报对象间的非线性关系,建立光伏系统出力的支持向量机(SVM)回归模型,并进行相应的预测.预测结果表明,支持向量机回归(SVR)方法为解决光伏系统出力的预测提供了一种可行路径. 相似文献
6.
为了提高电力变压器绕组状态监测水平,提出了一种基于频响曲线稀疏表示的变压器绕组变形模式识别方法。文章在构建了Gabor原子的过完备原子库和通过有限元模型仿真得到了正常及变形绕组频响曲线的基础上,将正常情况及变形情况下的绕组频响曲线在过完备原子库上进行稀疏表示,并对所有匹配的Gabor原子分别进行短频傅里叶变换、叠加,得到正常曲线及变形曲线的等效时频分布,然后将两条曲线的等效时频分布值相减,得到可以反映绕组频响曲线变形程度的特征向量。最后,利用支持向量机模型实现了不同绕组变形故障的识别。试验结果表明,提出的方法具有较高的可靠性,适用于绕组变形模式识别。 相似文献
7.
8.
9.
局部放电(PD)可以反映气体绝缘组合开关电器(GIS)内部的绝缘缺陷,不同类型的放电对GIS的危害程度存在明显的差异,正确识别GIS的放电类型对于保证GIS安全可靠运行、评估GIS的绝缘状况和制定合理的维修策略具有十分重要的意义。为了研究GIS中不同缺陷所激发的局放信号的特征,设计了4种典型放电缺陷模型来模拟GIS中可能存在的绝缘缺陷,通过试验从超高频(UHF)信号中提取出8个统计特征参数来描述放电的典型特征。基于支持向量机(SVM)算法设计构造了4分类SVM模型,采取投票的方式识别放电类型。实验结果表明,该方法识别率高,能有效识别4种GIS中的典型放电。 相似文献
10.
基于经验模式分解和最小二乘支持向量机的短期负荷预测 总被引:1,自引:0,他引:1
电力负荷是具有一定的周期性和随机性的非平稳时间序列,传统的预测方法是建立在负荷是平稳序列的前提下,难以精确的预测.为了进行有效的预测,提高预测精度,提出将经验模式分解EMD(Empirical Mode Decomposition)和最小二乘支持向量机LS-SVM(Least Square Support Vector Machine)相结合对短期负荷进行预测.首先,运用EMD将负荷序列自适应地分解成一系列不同尺度的本征模式分量IMF(intrinsic mode function),分解后的分量突出了原负荷的局部特征,能更明显地看出原负荷序列的周期项、随机项和趋势项;然后,根据各个IMF的变化规律,采用合适的核函数和超参数构造不同的LS-SVM进行预测,最后对各分量的预测值进行相加得到最终的预测值.仿真试验表明,此方法具有较高的精度和较强的推广能力. 相似文献
11.
12.
基于支持向量机的复杂环境条件下绝缘子闪络电压的预测 总被引:1,自引:3,他引:1
在大型人工气候实验室对XZP-160绝缘子试验数据的基础上,提出了一种基于支持向量机的绝缘子闪络电压预测方法。支持向量机是以统计学习理论为基础的,采用结构风险最小化原则代替传统经验风险最小化原则的新型统计学习方法。该文以气压、覆冰、污秽程度等环境条件作为输入,绝缘子的闪络电压作为输出,对环境条件和闪络电压的关系进行训练,建立绝缘子闪络电压的预测模型。结果表明预测的闪络电压与实测结果基本一致。该方法为复杂环境条件下外绝缘的选择提供了一种新的途径。 相似文献
13.
14.
基于最小二乘支持向量机的风速预测模型 总被引:7,自引:2,他引:7
风速具有较大的随机性,预测的准确度不高。针对这种现象,基于最小二乘支持向量机(least squares support vector machine,LS-SVM)理论,结合某风电场实测风速数据,建立了最小二乘支持向量机风速预测模型。对该风电场的风速进行了提前1h的预测,其预测的平均绝对百分比误差仅为8.55%,预测效果比较理想。同时将文中的风速预测模型与神经网络理论、支持向量机(support vector machine,SVM)理论建立的风速预测模型进行了比较。仿真结果表明,文中所提模型在预测精度和运算速度上皆优于其他模型。 相似文献
15.
基于贝叶斯证据框架的支持向量机负荷建模 总被引:4,自引:0,他引:4
负荷建模一直是电力系统中的难题之一,精确的负荷模型对电力系统数字仿真非常重要。本文提出一种基于贝叶斯证据框架的支持向量机负荷建模方法。根据广域测量的负荷特性数据,利用支持向量机进行负荷建模,选用高斯径向基核函数优化模型结构;用贝叶斯证据框架推断准则1解释了支持向量机的训练,又将贝叶斯证据准则2和3应用到支持向量机。采用贝叶斯证据框架的三个准则对负荷模型进行训练并对参数进行了辨识和优化。通过对支持向量机负荷模型的仿真试验,验证了该方法的正确性和有效性。贝叶斯证据框架下的支持向量机负荷模型具有泛化能力强、结构灵活、计算速度快的特点,能够较准确地描述实际负荷特性。 相似文献
16.
17.
基于支持向量机的高压断路器机械状态分类 总被引:5,自引:0,他引:5
基于统计学习理论的支持向量机是专门研究少样本情况下的统计规律及学习方法,为故障诊断向智能化方向发展提供了途径.本文首先介绍了支持向量机的基本原理;其次提出了一种基于小波包和熵理论的振动信号特征提取方法,即利用小波包分解各节点重构信号的熵值反映信号与正常状态的偏移;最后详细介绍了这种新方法在断路器故障诊断中的具体应用,并与传统神经网络方法相比较.使用结果表明:无论在分类效果,还是学习速度方面,支持向量机都优于神经网络,更适合在断路器机械状态识别中的应用. 相似文献
18.
19.
徐贞华 《电力系统及其自动化学报》2012,24(2):128-131
故障电弧是引发电气火灾事故的主要原因之一。该文将支持向量机引入故障电弧研究领域,进行不同负荷情况下故障电弧识别检测。首先参照美国UL1699标准进行实验采集电流数据,然后利用支持向量机实现故障电弧训练、检测识别,并对训练、识别结果进行分析,实验证明本文的检测方法具备一定的泛化能力。 相似文献