首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The hypereutectic Fe-Cr-C hardfacing alloys with different contents of TiB2 and Nb were prepared by selfshielded flux cored arc welding.The microstructure of a series of hypereutectic Fe-Cr-C hardfacing alloys added with various TiB2 and Nb contents was investigated by using optical microscopy(OM),scanning electron microscopy(SEM)and X-ray diffraction(XRD).In addition,their Rockwell hardness,microhardness and resistance to abrasive wear were tested.The results showed that the microstructure of a series of hypereutectic Fe-Cr-C hardfacing alloys consisted mainly of martensite,austenite,primary M7C3 carbides and eutectic M7C3 carbides.With the addition of TiB2,a new hard-phase TiC was produced in the hardfacing alloys.And in the alloys added with TiB2 and Nb,a new hard composite phase TiC-NbC was formed.The microhardness of the matrix was improved by adding TiB2 and Nb,but the effect on the Rockwell hardness of Fe-Cr-C hardfacing alloys was insignificant.The addition of TiB2 and Nb can also decrease the size of the primary M7C3 carbides and make the primary M7C3 homogeneous.As a result,the reinforced matrix,the more homogeneous primary M7C3 carbides,and the new hard-phase TiC-NbC all improved the wear resistance of Fe-Cr-C hardfacing alloys.  相似文献   

2.
3.
Hardfacing is a type of surface treatment for the extension of service life of worn parts or structures and the improvement of the surface properties through deposition of the alloys using arc welding or laser cladding.[1,2] Among the hardfacing alloys, the high chromium hardfacing alloys have been used most extensively for dies or parts in various industrial areas because of their excellent hardness, corrosion resistance, and wear resistance as well as inexpensiveness.[2-6] These properties are obtained from the large volume fraction of hard chromium carbides.[3-8] The recent works on these alloys have focused on the property enhancement, the microstructural modification, and the high-temperature application.[1,7,8]  相似文献   

4.
采用金属粉型药芯焊丝自保护明弧焊制备Cr9Mn6Nb2WVSi Ti奥氏体耐磨堆焊合金,借助XRD,SEM,EDS及光学显微镜研究外加WC颗粒对其显微组织及耐磨性的影响。结果表明,随焊丝药芯中WC增加,奥氏体晶粒细化,沿晶分布的多元合金化碳化物数量增加。初生γ-Fe相原位析出了(Nb,Ti,V)C相和残留WCx颗粒,起到晶内弥散强化作用,沿晶分布的(Nb,Ti,V)C和M_6C(M=Fe,Cr,Mn,V,W)相隔断了网状或树枝状的沿晶M_7C_3相,使其细化、断续分布而提高合金韧性,减轻沿晶碳化物数量增加的不利影响。硬度和磨损测试结果显示,明弧堆焊奥氏体合金洛氏硬度仅为40~47,但其磨损质量损失低于高铬铸铁合金,具有良好耐磨性;随外加WC含量提高,奥氏体合金晶内和晶界显微硬度差异显著减小,合金表面趋于均匀磨损而改善耐磨性。该奥氏体合金的磨损机制主要是磨粒显微切削,适用于带有一定冲击载荷磨粒磨损的工况下使用。  相似文献   

5.
 It is expected that the welding hardfacing of continuous casting rolls has better welding performance and higher wear resistance. A new type of submerged-arc hardfacing flux-cored wire has been developed through nitrogen replacing part of carbon and addition of the nitrogen-fixing elements of niobium and titanium. And microstructure, degree of hardness and high-temperature wear resistance of its deposited metal samples were also investigated. It is found that the microstructure is martensite, residual austenite and carbonitride precipitates. As a result, the hardfacing metal with homogeneous distribution of very fine carbonitride particles had high hardness and excellent wear-resisting property during high-temperature wear, which could significantly extend the service life of continuous casting rolls.  相似文献   

6.
Hardfacing alloys with different amounts of ceria were prepared by self-shielded flux cored arc welding.The abrasion tests were carried out using the dry sand-rubber wheel machine according to JB/T 7705-1995 standard.The hardness of hardfacing deposits was meas-ured by means of HR-150AL Rockwell hardness test and the fracture toughness was measured by the indentation method.Microstructure characterization and surface analysis were made using optical microscopy,scanning electron microscopy(SEM) and energy spectrum analy-sis.The results showed that the wear resistance was determined by the size and distribution of the carbides,as well as by the matrix micro-structure.The main wear mechanisms observed at the surfaces included micro-cutting and micro-ploughing of the matrix.The addition of ceria improved the hardness and fracture toughness of hardfacing deposits,which would increase the resistance to plastic deformation and scratch,thus the wear resistance of hardfacing alloys was improved.  相似文献   

7.
Iron-based weld hardfacing deposits are used to provide a wear-resistant surface for a structural base material. Iron-based hardfacing alloys that are resistant to corrosion in oxygenated aqueous environments contain high levels of chromium and carbon, which results in a dendritic microstructure with a high volume fraction of interdendrite carbides which provide the needed wear resistance. The ferrite content of the dendrites depends on the nickel content and base composition of the iron-based hardfacing alloy. The amount of ferrite in the dendrites is shown to have a significant influence on the hardness and galling wear resistance, as determined using ASTM G98 methods. Fracture-toughness (K IC) testing in accordance with ASTM E399 methods was used to quantify the damage tolerance of various iron-based hardfacing alloys. Fractographic and microstructure examinations were used to determine the influence of microstructure on the wear resistance and fracture toughness of the iron-based hardfacing alloys. A crack-bridging toughening model was shown to describe the influence of ferrite content on the fracture toughness. A higher ferrite content in the dendrites of an iron-based hardfacing alloy reduces the tendency for plastic stretching and necking of the dendrites, which results in improved wear resistance, high hardness, and lower fracture-toughness values. A NOREM 02 hardfacing alloy has the most-optimum ferrite content, which results in the most-desired balance of galling resistance and high K IC values.  相似文献   

8.
A correlation was made of the microstructure, wear resistance, and fracture toughness of hardfacing alloys reinforced with complex carbides. The hardfacing alloys were deposited twice on a low-carbon steel substrate by a submerged arc welding (SAW) method. In order to investigate the effect of complex carbides, different fractions of complex carbide powders included inside hardfacing electrodes were employed. Microstructural analysis of the hardfaced layer showed that cuboidal carbides, in which a TiC carbide core was encircled by a WC carbide, and rod-type carbides, in which W and Ti were mixed, were homogeneously distributed in the bainitic matrix. In the surface layer hardfaced with FeWTiC powders, more complex carbides were formed, because of the efficient melting and solidification during hardfacing, than in the case of hardfacing with WTiC powders. As the volume fraction of complex carbides, particularly that of cuboidal carbides, increased, the hardness and wear resistance increased. In-situ observation of the fracture process showed that microcracks were initiated at complex carbides and that shear bands were formed between them, leading to ductile fracture. The hardness, wear resistance, and fracture toughness of the hardfacing alloys reinforced with complex carbides were improved in comparison with high-chromium white-iron hardfacing alloys, because of the homogeneous distribution of hard and fine complex carbides in the bainitic matrix.  相似文献   

9.
Nitrogen alloying of Fe–Cr13–C hardfacing alloy produces marked precipitation strengthening to achieve an improvement in high‐temperature wear resistance. Two hardfacing alloys of Fe–Cr13–C (with and without nitrogen) are slid on carbon steel at high‐temperature of 600°C and high load of 600 N, and wear behaviors are studied systematically. It is found that abrasive wear occurrs on the surface of the hardfacing alloy due to abrasive action of crushed oxide particles coming from the surface of carbon steel on the high temperature. The wear resistance is determined by the size and distribution of precipitates. The results show that the hardfacing alloy can obtain a great increase in hardness and a marked decrease in wear depth of grooving due to the effect of carbonitirde precipitates. The high‐temperature wear resistance of the Fe–Cr13–C hardfacing alloy is improved by nitrogen alloying, and the wear mechanism is mainly plastic deformation with minimum depth of grooving caused by the oxide particles.  相似文献   

10.
11.
The present paper describes an investigation aimed at evaluating the microstructural and dry sliding adhesive wear characteristics of Fe–xCr–4Mn–3C hardfacing alloys applied through shielded metal arc welding. The effect of chromium addition on the microstructure of hardfacings was carried out by using optical microscope, field emission scanning electron microscope and X-ray mapping. Dry sliding wear tests were performed on a pin-on-disc wear tribometer. From the experimental results, it was observed that the primary carbides were refined and increased with the increase of chromium content. The morphology of carbides revealed that the primary carbides were rod shaped. The increased chromium content was also found to be beneficial to enhance hardness and wear resistance of hardfacings. The correlation between hardness and wear resistance exhibited the reliability of hardness as an indicator of the wear performance of hardfacings.  相似文献   

12.
采用熔化极气体保护焊技术(gas metal arc welding,GMAW)制备了Fe-Cr-C-Nb堆焊合金,对合金在不同法向载荷(70~190 N)下进行干砂/橡胶轮松散三体磨粒磨损实验。通过X射线衍射分析、扫描电子显微镜观察、能谱分析、磨损失重测试、体视显微镜观察、激光扫描共焦显微镜观察和维氏硬度测量等手段表征了合金显微组织与磨痕特征,研究了合金在不同法向载荷作用下磨损行为的变化。结果表明:堆焊合金显微组织主要由初生奥氏体基体、网状共晶组织及分布于基体上的NbC硬质相组成;合金磨损损失、磨痕深度随法向载荷增大而增大,磨损机制主要为奥氏体基体的微切削及NbC、M7C3的脆性剥落;法向载荷的提高加剧了磨痕亚表面的加工硬化,从而提高了奥氏体基体耐磨性,这导致磨损损失及磨痕深度增长幅度缓慢。  相似文献   

13.
采用激光熔覆技术在T10A钢表面制备了FeMoCoNiCrTix(x分别为0.25,0.50,0.75,1.00)高熵合金熔覆层,分析了试样熔覆层及基体界面处的相结构及组织,并利用显微硬度计测试了试样处理前后的截面硬度变化。研究表明,经过激光熔覆在T10A钢表面得到的高熵合金层主要由NiCrFe、NiCrCoMo 2种固溶体为主,其结构分别为BCC结构和FCC结构,熔覆层的组织以柱状枝晶为主,界面处出现等轴晶;随着Ti含量增多,熔覆层由固溶强化变为固溶体与硬质相混合强化,熔覆层的HV硬度达到了792,热影响区的HV硬度达到了620,均高于基体硬度。同时耐磨损性能有了明显提高,磨损方式由粘着磨损逐渐变为磨粒磨损。   相似文献   

14.
为获得更高性价比的激光熔覆液压支架立柱,开发2种重载专用的新型多组元合金粉末进行液压支架立柱熔覆工艺筛选,并采用SEM、CASS、PT探伤等分析方法,检测分析了合金粉末显微形貌及微区成分、熔覆层剖面缺陷、表面硬度、耐腐蚀性能、耐磨性能。结果表明,合金粉末FeNiCrBSi-B较FeNiCrBSi-A的关键元素分布更为均匀,球形度更佳;FeNiCrBSi-A、FeNiCrBSi-B合金粉末的熔覆硬度分为HRC 57.0、HRC 52.6;FeNiCrBSi-B合金粉末的8000W激光熔覆试样未见明显熔覆缺陷;熔覆层FeNiCrBSi-A、FeNiCrBSi-B均能有效提升基体的耐磨性能,且FeNiCrBSi-A熔覆层的耐磨性更好,FeNiCrBSi-B熔覆层的耐腐蚀性能更好。  相似文献   

15.
The wear behavior between hardfacing materials   总被引:4,自引:0,他引:4  
Hardface weld cladding in industry most commonly uses cobalt-based STELLITE nos. 6 and 12 and nickel-based Colmonoy nos. 56, 83, and 88 for plasma transferred arc (PTA) welding of 4140 steel. Frictional and abrasion wear of weld layers are compared with that of the widely used nitridized, low-level SKD61, SACM1 steel alloys and with centrifugal-cast nickel-based Colmonoy No. 68 bimetal. Experimental results show that cobalt alloys are not suitable for low-alloy steel frictional wear. However, nickel alloys are quite compatible. Resistance to abrasive wear increased in the experimental materials according to the level of hardness. Wear resistance was compromised in experimental materials when the hard phase was too dispersed.  相似文献   

16.
Wear is one of the major problems faced in industry that reduces the life of industrial components and increases the operating costs. Therefore, hardfacing is widely employed by engineers to minimize components’ wear, in which single or multiple layers of hard material that mainly consists of carbides deposited on the base metal. However, these carbide-based materials suffer from solidification cracking due to lack of ductility. In this study, titanium carbide (TiC) reinforced alloy steel deposited using self-shielded flux cored arc welding technique. The microstructure and phase analysis in the hardfaced deposit by scanning electron microscope, energy dispersive x-ray and X-ray diffractometer revealed that the microstructure consists of finely distributed TiC within matrix of martensite and some retained austenite. Microhardness test and pin-on-disk wear test had shown that the clad deposit posses better hardness and wear resistance. Retained austenite formation and TiC precipitation were discussed in detail and correlated with the mechanical properties.  相似文献   

17.
采用等离子熔覆(PTA)在Q235上制备出含有细小碳化铌的Fe-Cr-B-C-Nb熔覆层,设计了B含量分别为0,2.2%,3.2%,4.0%的四组合金,通过SEM,XRD,MLS-225型湿式橡胶轮磨粒磨损试验机,自制落锤冲击试验机研究了B含量对Fe-Cr-B-C-Nb熔覆层组织与性能的影响.结果表明B含量对熔覆层组织与性能有显著的影响,随B含量的增加,合金硬度不断增加,耐磨性逐渐增加,合金的耐冲击性逐渐变差,当B含量为2.2%时,合金具有良好的综合性能.  相似文献   

18.
Niobium, like titanium and vanadium, forms superhard MC carbides that remain relatively pure in technical alloys on account of their low solubility for other metallic alloying elements. However, because they have a greater hardness than the precipitated chromium carbides commonly used in wear‐resistant alloys, they are suitable as alternative hard phases. This contribution deals with new wear‐resistant steels and casting alloys containing niobium carbide. These include a secondary hardening hardfacing alloy, a composite casting alloy for wear applications at elevated temperatures, a white cast iron as well as two variants of a corrosion‐resistant cold‐work tool steel produced by melt metallurgy and by powder metallurgy. A heat‐resistant casting alloy is also discussed. Based on equilibrium calculations the microstructures developing during production of the alloys are analysed, and the results are discussed with respect to important properties such as abrasive wear and corrosion resistance.  相似文献   

19.
The wear resistance and structural changes in a number of amorphous alloys based on iron and cobalt and in high-carbon tool steels are studied during wear by a fixed abrasive (crondum, Carborundum) at room temperature and −196°C. The abrasive wear resistance of the amorphous alloys is shown to be 1.6–3.1 lower than that of the high-carbon tool steels having a similar hardness. The relatively low level of the abrasive wear resistance of the amorphous alloys is assumed to be caused by strain softening of their surface during wear. A nanocrystalline structure is found to form in local microvolumes in a thin deformed surface layer of the alloys.  相似文献   

20.
TC4钛合金表面激光熔覆Ni包WC复合涂层研究   总被引:4,自引:1,他引:3  
为了提高钛合金的耐磨性能及使用性能,采用激光熔覆法在TC4钛合金基体上制备了Ni与WC混合粉末涂层,研究了不同WC添加量对熔覆层的物相组成、显微组织、硬度及耐磨性能的影响。结果表明,三组不同的熔覆材料经过激光熔覆后,都可以使材料表面硬度和耐磨性能较基材大幅度增加。但是随着WC含量的增加,熔覆层均匀性降低,出现小颗粒的WC团,并且组织开始多样化,且硬度分布均匀性也有所下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号