共查询到20条相似文献,搜索用时 46 毫秒
1.
提出一种新型的遗传算法交叉算子,即单纯形交叉算子。这种算子实现了遗传算法与单纯形算法之间的结合,它能加快遗传算法的寻优速度,提高遗传算法定位最优解的精度。通过动态调整该算子的调用概率,可以方便地控制它的使用。本文还提出了一种所谓的“淘汰选择”,这种操作使得操作算子生成的新解不再是简单地取代其亲生父代个体,而是取代父代群体中的劣质个体。测试的算例表明该算子效果显著。 相似文献
2.
基于变形遗传算法交叉算子的Flow-Shop问题求解 总被引:3,自引:0,他引:3
通过合理的作业排序可以提高企业设备的利用率.分析指出了遗传算法中典型的单点交叉算子在求解Flow-Shop问题时进化缓慢的缺陷,提出了一种改进型单点交叉算子,使得交叉点前和交叉点后的基因都有机会保留或改变,扩大搜索范围,提高进化速度.标准测试案例显示,改进型单点交叉算子能够提高进化速度,寻优能力强于单点交叉算子. 相似文献
3.
4.
为优化航天器中隔振系统的隔振参数,提出了一种基于自适应遗传算法的优化方法。在只考虑单条支腿的前提下,建立了主动隔振系统的动力学模型,通过拉普拉斯变换得到了上平台输出的力对下平台控制力的传递函数,并获得待优化的参数。将参数优化问题转化成数值优化问题,利用最大熵法生成算法的目标函数;采用新的选择算子来避免算法早熟;提出自适应交叉算子和自适应高斯变异算子来保证种群多样性;通过优胜劣汰和种群迁移法则来提高算法的全局收敛性。最后,通过仿真实例对算法的有效性进行验证,结果表明:和传统的遗传算法相比,本算法的收敛速度快、优化效果好。 相似文献
5.
6.
7.
8.
针对一般遗传算法寻优速度不确定,难以可靠应用于自适应控制的特点,提出有限代遗传算法,并应用于自适应控制器参考优化上。仿真以电弧炉控制为例,用辅助最小二乘法辩识模型的参数,以不对称优化法初步确定控制器参数,然后以有限代遗传算法调控制器参考,结果显示,可达到优良的控制品质。 相似文献
9.
10.
自适应遗传算法在机械优化设计方面的应用 总被引:2,自引:0,他引:2
阐述了自适应遗传算法原理,以及它在某发动机气门弹簧的可靠性优化设计中的应用,通过测试,结果表明此算法的收敛性能优于标准遗传算法。 相似文献
11.
解析法计算应力敏度的三维边界元形状优化 总被引:2,自引:0,他引:2
讨论了三维弹性连续体应力集中极小化的形状优化问题。边界元法作为应力分析工具,解析法或差分法计算应力敏度,用约束变尺度优化算法进行优化。根据形状优化的特点,给出了提高求解形状优化问题数值方法效率的措施:用子结构技术,节省了应力重分析时的计算机时;用选主元三角分解法方程组,使解析敏度分析时不解方程组。所编程序实用于分布载荷作用下的一般三维弹性连续体构件的应力集中最小的形状优化问题。该算例为轴类零件,用三次样条函数描述待优化力界的母线,并将其插值样点的坐杆作为设计变量。待优化边界光滑,设计变量小。算例结果表明:优化结果正确,应力集中显著降低,程序运行稳定、高效和可靠。 相似文献
12.
13.
OPTIMIZATION OF ELECTRO-CHEMICAL MACHINING PROCESS PARAMETERS USING GENETIC ALGORITHMS 总被引:1,自引:0,他引:1
ECM and ECM-based processes (derived and hybrid processes) are one of the most widely used advanced machining processes (AMPs) to make complicated shapes of varying sizes in the products made of electrically conducting but difficult-to-machine materials such as superalloys, Ti-alloys, alloy steel, tool steel, stainless steel, etc. These materials are extensively used in aerospace, automobile, space, nuclear, defense, cutting tools, dies and mold making applications. ECM offers some unique advantages over other conventional and advanced machining processes but its use incurs relatively higher initial investment cost, operating cost, tooling cost, and maintenance cost. Use of optimum ECM process parameters can significantly reduce the ECM operating, tooling, and maintenance cost and will produce components of higher accuracy which is very important in some critical areas such as aerospace, space, defense, nuclear applications. Therefore, choice of optimum process parameters is essential to ensure the most cost-effective, efficient, and economic utilization of ECM process potentials. This paper describes optimization of three most important ECM process parameters namely tool feed rate, electrolyte flow velocity, and applied voltage with an objective to minimize geometrical inaccuracy subjected to temperature, choking, and passivity constraints using real-coded genetic algorithms. Comparison of the obtained optimization results with the results of past work in this direction shows an improvement in terms of geometrical accuracy. 相似文献
14.
15.
16.
17.
桁架优化遗传算法的若干改进 总被引:6,自引:2,他引:6
针对桁架优化问题研究二进制编码遗传算法,采用凝聚函数将约束优化问题转化为无约束优化问题,提出一种综合考虑约束值和适应度值的选择方法,保证了有潜力的设计被优先选择。并利用子代和父代之间的竞争使进化过程充分考虑以前最优值的遗传基因。算例表明,本文提出的方法是可行的,而且适应性更广。 相似文献
18.
ADAPTIVE LEARNING CONTROL OF CUTTING PARAMETERS FOR SCULPTURED SURFACE CUTTING BASED ON GENETIC ALGORITHMS AND NEURAL NETWORK 总被引:1,自引:0,他引:1
Fu Hongya Wang Yongzhang Lu Hua Fu Yunzhong Department of Mechanical Engineering Harbin Institute of Technology Harbin ChinaTakaaki Nagao University of Tokyo Japan 《机械工程学报(英文版)》2002,15(2):145-148
An adaptive learning control scheme intended to the on-line optimization of sculptured surface cutting process is presented. The scheme uses a back-propagation neural network to learn the relationships between process inputs and process states. The cutting parameters of the process model are optimized through a genetic algorithms(GA). The capacity of the proposed scheme for determining optimum process inputs under a variety of process conditions and optimization strategies is evaluated on the basis of milling of a sculptured surface using a ball-end mill. The experimental results show that the neural network could model the cutting process efficiently, and the cutting conditions such as spindle speed could be regulated for achieving high efficiency and high quality. Therefore the proposed approach can be well applied to the manufacturing of dies and molds. 相似文献
19.
20.
Abrasive flow machining (AFM) is an economic and effective non-traditional machining technique, which is capable of providing excellent surface finish on difficult to approach regions on a wide range of components. With this method, it has become possible to substitute various time-consuming deburring and polishing operations that had often lead to non-reproducible results. In this paper, group method of data handling (GMDH)-type neural networks and Genetic algorithms (GAs) are first used for modelling of the effects of number of cycles and abrasive concentration on both material removal and surface finish, using some experimentally obtained training and testing data for brass and aluminum. Using such polynomial neural network models obtained, multi-objective GAs (non-dominated sorting genetic algorithm, NSGA-II) with a new diversity preserving mechanism are then used for Pareto-based optimization of AFM considering two conflicting objectives such as material removal and surface finish. It is shown that some interesting and important relationships as useful optimal design principles involved in the performance of AFM can be discovered by the Pareto-based multi-objective optimization of the obtained polynomial models. Such important optimal principles would not have been obtained without the use of both GMDH-type neural network modelling and multi-objective Pareto optimization approach. 相似文献