首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We present a novel microchannel emulsification (MCE) system for mass-producing uniform fine droplets. A 60 × 60-mm MCE chip made of single-crystal silicon has 14 microchannel (MC) arrays and 1.2 × 104 MCs, and each MC array consists of many parallel MCs and a terrace. A holder with two inlet through-holes and one outlet through-hole was also developed for simply infusing each liquid and collecting emulsion products. The MCE chip was sealed well by physically attaching it to a flat glass plate in the holder during emulsification. Uniform fine droplets of soybean oil with an average diameter of 10 μm were reliably generated from all the MC arrays. The size of the resultant fine droplets was almost independent of the dispersed-phase flow rate below a critical value. The continuous-phase flow rate was unimportant for both the droplet generation and the droplet size. The MCE chip enabled mass-producing uniform fine droplets at 1.5 ml h−1 and 1.9 × 109 h−1, which could be further increased using a dispersed phase of low viscosity.  相似文献   

2.
The authors recently proposed a promising technique for producing monodisperse emulsions using a straight-through microchannel (MC) device composed of an array of microfabricated oblong holes. This research developed new straight-through MC devices with tens of thousands of oblong channels of several microns in size on a silicon-on-insulator plate, and investigated the emulsification characteristics using the microfabricated straight-through MC devices. Monodisperse oil-in-water (O/W) and W/O emulsions with average droplet diameters of 4.4–9.8 μm and coefficients of variation of less than 6% were stably produced using surface-treated straight-through MC devices that included uniformly sized oblong channels with equivalent diameters of 1.7–5.4 μm. The droplet size of the resultant emulsions depended greatly on the size of the preceding oblong channels. The emulsification process using the straight-through MC devices developed in this research had very high apparent energy efficiencies of 47–60%, defined as (actual energy input applied to droplet generation/theoretical minimum energy input necessary for making droplets) × 100. Straight-through MC devices with numerous oblong microfluidic channels also have great potential for increasing the productivity of monodisperse fine emulsions.  相似文献   

3.
Microchannel (MC) emulsification is a promising technique for producing monodisperse emulsions consisting of highly uniform droplets. The authors developed a high-aspect-ratio microstructure (HARMST) made of poly(methyl methacrylate) (PMMA) as a new MC emulsification device. A PMMA straight-through MC array plate consisting of 31,250 through-holes with a 7.3 × 22.9-μm oblong section and a 200-μm depth was fabricated by a process of synchrotron radiation (SR) lithography and etching. Oblong MCs fabricated in a PMMA straight-through MC array were highly uniform with a coefficient of variation of less than 2%. The fabricated PMMA straight-through MC array plate was used to produce water-in-oil (W/O) emulsions. Monodisperse W/O emulsions with average droplet diameters of approximately 25 μm and a minimum coefficient of variation of 3.2% were produced via a hydrophobic PMMA straight-through MC array. The PMMA straight-through MC array plate also produced monodisperse W/O emulsions at droplet production rates of up to 1.7 × 104/s. The PMMA straight-through MC array plates developed in this work are expected to expand the application field of emulsification using straight-through MC array plates, which have previously been made of single-crystal silicon.  相似文献   

4.
This paper reports the production of monodisperse water-in-oil (W/O) emulsions using new microchannel emulsification (MCE) devices, asymmetric straight-through MC arrays that were hydrophobically modified. The silicon asymmetric straight-through MC arrays consisted of numerous pairs of microslots and circular microholes whose cross-sectional sizes were 10 μm. This paper primarily focused on investigating the effect of the osmotic pressure of a dispersed phase (Πd) on MCE. This paper also investigated the effects of the type of continuous-phase oils and the dispersed-phase flux (J d) on MCE. The dispersed phases were Milli-Q water and Milli-Q water solutions containing sodium chloride. The continuous phases were decane (as control), hexane, medium chain triacylglyceride (MCT), and refined soybean oil (RSO) solutions containing tetraglycerin monolaurate condensed ricinoleic acid ester (TGCR) as a surfactant. At Πd of exceeding threshold, highly uniform aqueous droplets with coefficients of variation of less than 3% were stably generated via hydrophobic asymmetric straight-through MCs. Monodisperse W/O emulsions with average droplet diameters between 32 and 45 μm were produced using the alkane–oil and triglyceride–oil solutions as the continuous phase. This work also demonstrated that the hydrophobic asymmetric straight-through MC array had remarkable ability to produce highly uniform aqueous droplets at very high J d of up to 1,200 L m−2 h−1.  相似文献   

5.
We investigated a preparation method of giant vesicles using monodisperse water-in-oil (W/O) emulsions stabilized by bilayer-forming emulsifiers. A mixture of phosphatidylcholine, cholesterol and stearylamine was used both to stabilize the water droplets formed in the emulsion and to form the vesicles. Using this lipid mixture, we obtained monodisperse W/O emulsions with mean droplet diameters of 10–40 μm and coefficients of variation as small as ca 5% by means of the microchannel (MC) emulsification technique. Utilization of an asymmetric straight-through MC array device enabled a monodisperse droplet productivity of up to 80 ml/h. The obtained water droplets were converted to giant vesicles via evaporative removal of the continuous-phase solvent followed by addition of an aqueous buffer solution. The resulting vesicles were similar in size to their starting water droplets, and a hydrophilic fluorescent marker was entrapped inside the vesicles.  相似文献   

6.
Micro-droplet formation from an aperture with a diameter of micrometers is numerically investigated under the cross-flow conditions of an experimental microchannel emulsification process. The process involves dispersing an oil phase into continuous phase fluid through a microchannel wall made of apertured substrate. Cross-flow in the microchannel is of non-Newtonian nature, which is included in the simulations. Micro-droplets of diameter 0.76–30 μm are obtained from the simulations for the apertures of diameter 0.1–10.0 μm. The simulation results show that rheology of the bulk liquid flow greatly affects the formation and size of droplets and that dispersed micro-droplets are formed by two different breakup mechanisms: in dripping regime and in jetting regime characterized by capillary number Ca. Relations between droplet size, aperture opening size, interfacial tension, bulk flow rheology, and disperse phase flow rate are discussed based on the simulation and the experimental results. Data and models from literature on membrane emulsification and T-junction droplet formation processes are discussed and compared with the present results. Detailed force balance models are discussed. Scaling factor for predicting droplet size is suggested.  相似文献   

7.
Although many aspects of microchannel emulsification have been covered in literature, one major uncharted area is the effect of viscosity of both phases on droplet size in the stable droplet generation regime. It is expected that for droplet formation to take place, the inflow of the continuous phase should be sufficiently fast compared to the outflow of the liquid that is forming the droplet. The ratio of the viscosities was therefore varied by using a range of continuous and dispersed phases, both experimentally and computationally. At high viscosity ratio (η d/η c), the droplet size is constant; the inflow of the continuous phase is fast compared to the outflow of the dispersed phase. At lower ratios, the droplet diameter increases, until a viscosity ratio is reached at which droplet formation is no longer possible (the minimal ratio). This was confirmed and elucidated through CFD simulations. The limiting value is shown to be a function of the microchannel design, and this should be adapted to the viscosity of the two fluids that need to be emulsified.  相似文献   

8.
Uniformly sized droplets of soybean oil, MCT (medium-chain fatty acid triglyceride) oil and n-tetradecane with a Sauter mean diameter of d 3,2 = 26–35 μm and a distribution span of 0.21–0.25 have been produced at high throughputs using a 24 × 24 mm silicon microchannel plate consisting of 23,348 asymmetric channels fabricated by photolithography and deep reactive ion etching. Each channel consisted of a 10-μm diameter straight-through micro-hole with a length of 70 μm and a 50 × 10 μm micro-slot with a depth of 30 μm at the outlet of each channel. The maximum dispersed phase flux for monodisperse emulsion generation increased with decreasing dispersed phase viscosity and ranged from over 120 L m−2 h−1 for soybean oil to 2,700 L m−2 h−1 for n-tetradecane. The droplet generation frequency showed significant channel to channel variations and increased with decreasing viscosity of the dispersed phase. For n-tetradecane, the maximum mean droplet generation frequency was 250 Hz per single active channel, corresponding to the overall throughput in the device of 3.2 million droplets per second. The proportion of active channels at high throughputs approached 100% for soybean oil and MCT oil, and 50% for n-tetradecane. The agreement between the experimental and CFD (Computational Fluid Dynamics) results was excellent for soybean oil and the poorest for n-tetradecane.  相似文献   

9.
We have fabricated a microfluidic gel valve device that used reversible sol–gel transition of methyl cellulose (MC). A microheater and a microtemperature sensor were implemented in each microchannel in the gel valve device. Before evaluating the performance of the gel valve device, various properties of the MC solution were investigated using viscometer, spectrophotometer, and NMR. Gelation temperature was increased as the MC concentration was increased. Clear gel, an intermediate state between clear sol and turbid gel, was found at the temperature range from 30–40°C to 50–60°C. Temperature at each microchannel of the device was measured and the effect of the temperature difference on the valve operation was elucidated. In order to have normal operation of the gel valve, it was important to keep the temperature of the heated microchannel around 60°C while keeping the temperature of the flowing microchannel below 35°C. The temperature difference between two microchannels was about 23 K when fan forced cooling (FFC) method was used. For normal performance of the gel valve device, a temporary pause of fluid flow for at least 5 s was required to complete the local gelation in the microchannel. Stable gel valve performance was obtained at the flow rates larger than 5 μl/min. The gel valve device showed no leakage up to 2.07×104 Pa.  相似文献   

10.
Microfluidic devices with micro-sieve plate as the dispersion medium have been widely used for the mass production of emulsions. While unfortunately, few studies have so far been made for the droplet generation rules in those devices. In this work, the droplet generation processes in micro-sieve dispersion devices are investigated with specially designed micro-sieve pore arrays. The effects of channel structure, pore arrangement, and feeding method of dispersed phase on the average size and distribution of droplets are studied carefully. It is found the dimensionless average droplet diameters (d av/d e) in micro-sieve dispersion devices can be represented by a linear relation with Ca−1/4 of continuous phase, the same as the scaling law in T-junction microchannels. The flow distribution among pores and the steric hindrance between droplets affect the diameter distribution of generated droplet very much. Monodispersed droplets with polydispersity index less than 5% can be made at Ca number larger than 0.01 and phase ratio (Q D/Q C) less than 1/6 in the present investigation.  相似文献   

11.
Monodispersed water-in-oil emulsions were prepared with EDGE (Edge based Droplet GEneration) systems, which generate many droplets simultaneously from one junction. The devices (with plateau height of 1.0 μm) were coated with Cu and CuNi having the same hydrophobicity but different surface roughness. Emulsification was performed by using water as dispersed phase and oils with different viscosities (hexadecane, decane, hexane and sunflower oil) as continuous phases; lecithin, polyglycerol polyricinoleate (PGPR) and span80 were used as emulsifiers. The roughness affected the emulsification behaviour significantly. The smoother Cu surface exhibited droplet formation over the entire length of the droplet formation unit, while the rougher CuNi surface showed non-uniform filling of the plateau and much lower droplet formation frequency. In spite of this different behaviour, monodispersed droplets (CV <10 %) were produced by both systems (with span80 and PGPR), with a size six times the plateau height (d avg ≈ 6.0 μm). The droplet size decreased with increasing viscosity ratio and remained constant above some critical value. The emulsification process was stable over a wider range of pressures as previously found for silicon-based systems. The amount of PGPR influenced the pressure stability, but the system could be used effectively, while with lecithin and span80 the stable pressure range was very small. The pressure and viscosity stability of these semi-metal systems with rough surfaces show that the EDGE system has potential for practical applications, especially since overall productivity is not affected.  相似文献   

12.
Phase equilibria in the Co–Fe–La ternary system have been studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). Isothermal sections at 600 (in the whole concentration region) and 500 °C (in the La-rich region) for this system have been constructed. It was shown that the ternary compound La2(Co,Fe)17 (τ) (Th2Zn17-type structure) is stable at 600 °C and has homogeneity range from 67 to 72 at.% Co. It co-exists with the majority of solid phases (αFe,Co), LaCo13, LaCo5, La2Co7 and La2Co3 at 600 °C. The LaCo13 phase has the widest homogeneity region and dissolves up to 32.5 at.% Fe at 600 °C. The character of phase equilibria at 500 °C in the studied region is similar to those at solidus temperature. The character of phase equilibria at 600 °C is different from those at the solidus temperature. The main difference involves the fact that the equilibrium τ + LaCo5 which is present in the Co–Fe–La system at solidus temperature, is absent at 600 °C. Instead, the alternative equilibrium (αFe,Co) + La2Co7 is present at 600 °C.  相似文献   

13.
The ternary phase diagram La-Ni-Fe was studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). Three isothermal sections, at 750, 600 and 500 °C were constructed covering the whole concentration range. In addition, vertical sections at 15 and 35 at.% La were evaluated based on the abovementioned methods and DTA analysis. Among binary compounds, LaNi5, La5Ni19 and La2Ni7 have the widest homogeneity regions. The LaNi5 phase dissolves 19.9, 19.6 and 19.4 at.% Fe at 750, 600 and 500 °C, respectively. The solubility of Fe in La5Ni19 is 14.5, 12.1 and 8.9 at.% at 750, 600 and 500 °C, respectively. For the La2Ni7 phase, the Fe-solubility was found to be 13.9, 11.3 and 10.1 at.% at 750, 600 and 500 °C, respectively. The homogeneity regions of the remaining phases are much smaller. The character of phase equilibria at 750 °C in the Ni-rich region is similar to those at solidus temperature. The character of the phase equilibria at 600 and 500 °C, however, differs from those at higher temperatures. In particular, the equilibrium (γFe,Ni) + La5Ni19 which is present in the La-Ni-Fe system at solidus temperature and 750 °C, is absent at 600 and 500 °C. Instead, the alternative equilibrium LaNi5 + La2Ni7 is present at 600 °C. Furthermore, the equilibrium La2Ni7 + La2Ni3 which is present at solidus temperature, is replaced by the alternative equilibrium (αFe) + La7Ni16 at lower temperatures.  相似文献   

14.
For further understanding the dispersion process in the T-shaped microfluidic device, a double-pore T-shaped microchannel was designed and tested with octane/water system to form monodispersed plugs and droplets in this work. The liquid–liquid two-phase flow patterns were investigated and it was found that only short plugs, relative length L/w < 1.4, were produced. Additionally, the droplets flow was realized at phase ratios (F C /F D) just higher than 0.5, which is much smaller than that in the single-pore T-shaped microchannels. A repulsed effect between the initial droplets was observed in the droplet formation process and the periodic fluctuation flow of the dispersed phase was discussed by analyzing the resistances. Besides, the effect of the two-phase flow rates on the plug length and the droplet diameter was investigated. Considering the mutual effect of the initial droplets and the equilibrium between the shearing force with the interfacial tension, phase ratio and Ca number were introduced into the semi-empirical models to present the plug and droplet sizes at different operating conditions.  相似文献   

15.
In this paper, we report a microfluidic chip containing a cross-junction channel for the manipulation of UV-photopolymerized microparticles. Hydrodynamic-focusing is used to form a series of using 365 nm UV light to solidify the hydrogel droplets. We were able to control the size of the hydrogel droplets from 75 to 300 μm in diameter by altering the sample and by changing the flow rate ratio of the mineral oil in the center inlet channel to that of the side inlet channels. We found that the size of the emulsions increases with an increase in average velocity of the dispersed phase flow (polymer solution flow). The size of the emulsions decreases with an average velocity increase of the continuous phase flow (mineral oil flow). Experimental data show that the emulsions are very uniform. The developed microfluidic chip has the advantages of ease of fabrication, low cost, and high throughput. The emulsions generated are very uniform and have good regularity.  相似文献   

16.
This paper reports the visualization of droplet formation in co-flowing microfluidic devices using food-grade aqueous biopolymer–surfactant solutions as the dispersed droplet phase and sunflower oil as the continuous phase. Microparticle image velocimetry and streak imaging techniques are utilized to simultaneously recover the velocity profiles both within and around the dispersed phase during droplet formation and detachment. Different breakup mechanisms are found for Newtonian–Newtonian and non-Newtonian–Newtonian model water-in-oil emulsions, emphasizing the influence of process and material parameters such as the flow rates of both phases, interfacial tension, and the elastic properties of the non-Newtonian droplet phase on the droplet formation detachment dynamics.  相似文献   

17.
The Mn–Zr binary system has been investigated via experimental measurements and thermodynamic calculations. In order to investigate phase equilibria in the Mn–Zr system, five alloys were prepared by arc melting under vacuum. All alloys were examined by means of X-ray diffraction, scanning electron microscopy and electron probe microanalysis after annealing at 650 °C for 70 days or 950 °C for 30 days. The homogeneity range of ZrMn2 was determined to be from 25.0 to 33.2 at.% Zr at 950 °C and from 26.7 to 34.3 at.% Zr at 650 °C. The solubility of Mn in (αZr) was 1.6 at.% Mn, while that of Zr in (αMn) was 0.2 at.% Zr at 650 °C. The invariant reaction temperatures of liquid → ZrMn2 + (βZr) and (βZr) → ZrMn2 + (αZr) were determined to be 1131 and 785 °C, respectively. A thermodynamic assessment of the Mn–Zr system was conducted by taking into account the present experimental results and reliable literature data. The calculated results using the presently obtained parameters can well reproduce the experimental data.  相似文献   

18.
This paper reports experimental investigations on the droplet formation and size manipulation of deionized water (DIW) and nanofluids in a microfluidic T-junction at different temperatures. Investigations of the effect of microchannel depths on the droplet formation process showed that the smaller the depth of the channel the larger the increase of droplet size with temperature. Sample nanofluids were prepared by dispersing 0.1 volume percentage of titanium dioxide (TiO2) nanoparticles of 15 nm and 10 nm × 40 nm in DIW for their droplet formation experiments. The heater temperature also affects the droplet formation process. Present results demonstrate that nanofluids exhibit different characteristics in droplet formation with the temperature. Addition of spherical-shaped TiO2 (15 nm) nanoparticles in DIW results in much smaller droplet size compared to the cylindrical-shaped TiO2 (10 nm × 40 nm) nanoparticles. Besides changing the interfacial properties of based fluid, nanoparticles can influence the droplet formation of nanofluids by introducing interfacial slip at the interface. Other than nanofluid with cylindrical-shaped nanoparticles, the droplet size was found to increase with increasing temperature.  相似文献   

19.
This article describes the generation of microdispersed bubbles and droplets in a double T-junctions microfluidic device to form immiscible gas/liquid/liquid three-phase flowing systems. Segmented gas plugs are controllably prepared in water at the first T-junction to form gas/liquid two-phase fluid with the perpendicular flow cutting method. Then using this two-phase fluid as the cross-shearing fluid for the oil phase at the second T-junction, the gas/liquid/liquid three-phase flowing systems are prepared. Interestingly, it is found that the break-up of the oil droplets is mainly dominated by the cutting effect of the gas/liquid interface or the pressure drop across the emerging droplet, but independent with the viscous shearing effect of the continuous phase, even at the capillary number (Ca = u wμwow) higher than 0.01. The size laws and the distributions of the bubbles and droplets are investigated carefully, and a mathematical model has been developed to relating the operating conditions with the dispersed sizes.  相似文献   

20.
In present work, the phase equilibrium relations in the Ti-Ni-Hf ternary system, which are of great importance for the design of Ti-Ni based high temperature shape memory alloys, were investigated using diffusion triples and sixteen key equilibrated alloys. Based on the experimental results from electron-probe microscopy analysis (EPMA) and X-ray diffraction (XRD) techniques, two isothermal sections were constructed, which consist of 13 and 12 three-phase regions at 900 °C and 800 °C, respectively. Hf can substitute for Ti in TiNi and Ti2Ni phases increasing from 30, 62 at% at 800 °C to 36, 64 at% at 900 °C, respectively. The Hf7Ni10 and Hf9Ni11 phases show wide ternary composition ranges, while the solubility of Ti in HfNi5, Hf2Ni7, and HfNi phases are relatively limited. A new ternary phase of τ was detected for the first time, and the stoichiometry of τ phase is close to Ni:(Hf,Ti) = 11:14, with Ti substituting for Hf from ~5 at% to ~22 at%. The single-phase region of the τ phase became narrow as the decreasing of annealing temperature. Based on comparison of phase relations at 900 °C and 800 °C, it is speculated there is an invariant reaction TiNi + τ → HfNi + Ti2Ni at between 900 °C and 800 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号