首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoluminescence (PL) of selectively grown phosphorus (P) doped germanium (Ge) is investigated. 350–600 nm thick P-doped Ge is grown on 100 nm thick P-doped Ge buffer layer, which is annealed at 800 °C before the main part of Ge deposition. In the case of Ge deposited at 325 °C, approximately two times higher PL intensity is observed by P doping of ~3.2×1019 cm−3. Further increase of PL intensity by a factor of 1.5 is observed by increasing the growth temperature from 325 °C to 400 °C due to improved crystal quality. Varying PH3 partial pressure at 400 °C, red shift of the PL occurred with increasing P concentration due to higher bandgap narrowing. With increasing P concentration up to ~1.4×1019 cm−3 at 400 °C the PL peak intensity increases by filling electrons into the L valley and decreases due to enhanced point defect concentration and degraded crystallinity. By post-annealing at 500–800 °C, the PL intensity is further increased by a factor of 2.5 because of increased active P concentration and improved crystal quality. Reduced direct bandgap energy by introducing tensile strain is also observed.  相似文献   

2.
Generally, optoelectronic devices are fabricated at a high temperature. So the stability of properties for transparent conductive oxide (TCO) films at such a high temperature must be excellent. In the paper, we investigated the thermal stability of Ga-doped ZnO (GZO) transparent conductive films which were heated in air at a high temperature up to 500 °C for 30 min. After heating in air at 500 °C for 30 min, the lowest sheet resistance value for the GZO film grown at 300 °C increased from 5.5 Ω/sq to 8.3 Ω/sq, which is lower than 10 Ω/sq. The average transmittance in the visible light of all the GZO films is over 90%, and the highest transmittance is as high as 96%, which is not influenced by heating. However, the transmittance in the near-infrared (NIR) region for the GZO film grown at 350 °C increases significantly after heating. And the grain size of the GZO film grown at 350 °C after annealing at 500 °C for 30 min is the biggest. Then dye-sensitized TiO2 NPs based solar cells were fabricated on the GZO film grown at 350 °C (which exhibits the highest transmittance in NIR region after heating at 500 °C for 30 min) and 300 °C (which exhibits the lowest sheet resistance after heating at 500 °C for 30 min). The dye-sensitized solar cell (DSSC) fabricated on the GZO film grown at 350 °C exhibits superior conversion efficiency. Therefore, transparent conductive glass applying in DSSCs must have a low sheet resistance, a high transmittance in the ultraviolet–visible–infrared region and an excellent surface microstructure.  相似文献   

3.
Ni(Pt~15 at%)Si/Si(100) and Ni(Pt~15 at%)SiGe/SiGe/Si(100) films corresponding to rapid thermal annealing (RTA1) temperatures of 220, 230 and 240 °C with constant RTA2 (at 420 °C) have been investigated for sub 20 nm devices. X-ray reflectometry (XRR), X-ray diffraction (XRD), four point probe, and atomic force microscopy (AFM) techniques were employed for the characterization of NiSi and NiSiGe films. XRR results indicated that NiSi and NiSiGe film thicknesses increased with RTA1 temperatures. NiSi films densities increased with layer thickness but NiSiGe films displayed an opposite trend. The diffractograms revealed that NiSi and NiSiGe layers contain identical phases and possessed fiber texture at 220 °C. Whereas, the peaks shift were observed for NiSi (211) and NiSi (021) at higher RTA1 temperatures which appear due to Pt diffusion (hexagonal structures of larger grain size were noted). NiSiGe crystallites self-alignment was observed because of strained SiGe/Si(100) substrate. At 240 °C, NiSiGe layer showed the smallest crystallites. This is believed to be due to Pt distributed along the silicide grain boundaries which obstructs silicide grain growth. NiSi and NiSiGe sheet resistance decreased significantly with increase in RTA1 temperatures and found to correlate with multiple grain orientation. AFM revealed a smooth-stable surface morphology for all films.  相似文献   

4.
Single-crystalline nonpolar GaN epitaxial films have been successfully grown on r-plane sapphire (Al2O3) substrates by pulsed laser deposition (PLD) with an in-plane epitaxial relationship of GaN[1-100]//Al2O3[11-20]. The properties of the ~500 nm-thick nonpolar GaN epitaxial films grown at temperatures ranging from 450 to 880 °C are studied in detail. It is revealed that the surface morphology, the crystalline quality, and the interfacial property of as-grown ~500 nm-thick nonpolar GaN epitaxial films are firstly improved and then decreased with the growth temperature changing from 450 to 880 °C. It shows an optimized result at the growth temperature of 850 °C, and the ~500 nm-thick nonpolar GaN epitaxial films grown at 850 °C show very smooth surface with a root-mean-square surface roughness of 5.5 nm and the best crystalline quality with the full-width at half-maximum values of X-ray rocking curves for GaN(11-20) and GaN(10-11) of 0.8° and 0.9°, respectively. Additionally, there is a 1.7 nm-thick interfacial layer existing between GaN epitaxial films and r-plane sapphire substrates. This work offers an effective approach for achieving single-crystalline nonpolar GaN epitaxial films for the fabrication of nonpolar GaN-based devices.  相似文献   

5.
CuAlO2 films were deposited on clean glass substrates by the acrylamide sol–gel dip coating technique. The coated films were dried in air oven for 30 min followed by heat treatment in air at different temperatures in the range of 350–500 °C. The films annealed at low temperatures exhibited weak x-ray diffraction (XRD) peaks. As the post anneal temperature increased beyond 375 °C, the XRD pattern exhibited the diffraction peaks of rhombohedral CuAlO2. Surface morphology of the films indicated that the films annealed at low temperatures exhibit small grains. As the annealing temperature increases larger grains are observed. The root mean square (rms) value of the surface roughness increases with annealing temperature. The films exhibited optical transmission above 75%. The films post annealed at low temperature exhibited lower transmission. Optical band gap in the range of 3.43–3.75 eV was obtained for the films annealed at different temperature. Hall measurements indicated p-type conductivity. Resistivity of the films decreased from 25.0 to 2.0 Ω cm as the anneal temperature increased. Mobility and carrier density increased with annealing temperature.  相似文献   

6.
Tin oxide (SnO2) thin films were deposited on glass substrates by thermal evaporation at different substrate temperatures. Increasing substrate temperature (Ts) from 250 to 450 °C reduced resistivity of SnO2 thin films from 18×10−4 to 4×10−4 Ω ▒cm. Further increase of temperature up to 550 °C had no effect on the resistivity. For films prepared at 450 °C, high transparency (91.5%) over the visible wavelength region of spectrum was obtained. Refractive index and porosity of the layers were also calculated. A direct band gap at different substrate temperatures is in the range of 3.55−3.77 eV. X-ray diffraction (XRD) results suggested that all films were amorphous in structure at lower substrate temperatures, while crystalline SnO2 films were obtained at higher temperatures. Scanning electron microscopy images showed that the grain size and crystallinity of films depend on the substrate temperature. SnO2 films prepared at 550 °C have a very smooth surface with an RMS roughness of 0.38 nm.  相似文献   

7.
Amorphous Silicon Germanium (a-SiGe) thin films of 500 nm thickness are deposited on silicon substrates using Plasma Enhanced Chemical Vapour Deposition (PECVD). To obtain polycrystalline nature of films, thermal annealing is done at various temperature (450–600 °C) and time (1–10 h). The surface morphology of the pre- and post-annealed films is investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The crystallographic structure of the film is obtained by X-ray diffraction method. Raman spectroscopy is carried out to quantify the Ge concentration and the degree of strain relaxation in the film. Nano-indentation is performed to obtain the mechanical properties of the film. It is found that annealing reduces the surface roughness of the film and increases the Ge concentration in the film. The grain size of the film increases with increase in annealing temperature. The grain size is found to decrease with increase in annealing time up to 5 h and then increased. The results show that 550 °C for 5 h is the critical annealing condition for variation of structural and mechanical properties of the film. Recrystallization starts at this condition and results in finer grains. An increase in hardness value of 7–8 GPa has been observed. Grain growth occurs above this critical annealing condition and degrades the mechanical properties of the film. The strain in the film is only relaxed to about 55% even for 10 h of annealing at 600 °C. Transmission Electron Microscopy (TEM) observations show that the strain relaxation occurs by forming misfit dislocations and these dislocations are confined to the SiGe/Si interface.  相似文献   

8.
The influence of crystallinity of as-deposited Ge films on Ge quantum dot (QD) formation via carbon (C)-mediated solid-phase epitaxy (SPE) was investigated. The samples were fabricated by solid-source molecular beam epitaxy (MBE). Ge/C/Si structure was formed by sequential deposition of C and Ge at deposition temperature (TD) of 150–400 °C, and it was heat-treated in the MBE chamber at 650 °C. In the case of amorphous or a mixture of amorphous and nano-crystalline Ge film grown for TD ≤250 °C, density of QDs increased with increasing TD due to the increase of C-Ge bonds in Ge layer. Ge QDs with diameter of 9.2±2.1 nm were formed in the highest density of 8.3×1011 cm−2 for TD =250 °C. On the contrary, in the case of polycrystalline Ge film for TD ≥300 °C, density of QDs decreased slightly. This is because C incorporation into Ge layer during SPE was suppressed due to the as-crystallized columnar grains. These results suggest that as-deposited Ge film in a mixture of amorphous and nano-crystalline state is suitable to form small and dense Ge QDs via C-mediated SPE.  相似文献   

9.
Phosphorus-doped n-type Ge layers were grown on p-type Si (100) wafers (8 in. in diameter, resistivity 5–15 Ω cm) using rapid thermal chemical vapor deposition (RTCVD). The surface morphology was very smooth, with a root mean square (RMS) surface roughness of 0.29 nm. The in-plane lattice constant calculated from high-resolution X-ray diffraction (HR-XRD) data was 0.5664 nm, corresponding to in-plane tensile strain of ~0.47%. The Raman Ge peak for each location indicates tensile strain from the Ge wafer. We estimated the in-plane strain as tensile strain of ~0.45%, in excellent agreement with the XRD analysis. Initial photocurrent spectrum experiments on the sample confirm valence band splitting of the direct gap induced by tensile strain. The temperature dependence of the direct bandgap energy EΓ1 of Ge can be described by the empirical Varshni expression EΓ1(T)=0.864–5.49×10–4T 2/(T+296).  相似文献   

10.
Polycrystalline tin sulfide (SnS) thin films were grown on conducting glass substrates by pulse electrodeposition. The effect of annealing on the physical properties such as structure, morphology, optical, and opto-electronic properties were evaluated to understand the effect of post-deposition treatment for SnS films. Annealing at temperatures higher than 250 °°C resulted in the formation of SnS2 as a second phase, however, no significant grain growth or morphological changes were observed for films after annealing at 350 °C. A small change in band gap of 0.1 eV observed for films annealed at 350 °C was interpreted as due to the formation of SnS2 rather than due to morphological changes. This interpretation was supported by X-ray diffractometry, scanning electron microscopy, and Raman spectral data. The electric conduction in the films is controlled by three shallow trap levels with activation energies 0.1, 0.05, and 0.03 eV. The trap with energy 0.03 eV disappeared after annealing at higher temperature, however, the other two traps were unaffected by annealing.  相似文献   

11.
Bismuth doped tin sulfide (SnS:Bi) thin films were deposited onto glass substrates by the spray pyrolysis technique at the substrate temperature of 350 °C. The effect of doping concentration [Bi/Sn] on their structural, optical and electrical properties was investigated as a function of bismuth doping between 0 and 8 at%. The XRD results showed that the films were polycrystalline SnS with orthorhombic structure and the crystallites in the films were oriented along (111) direction. Atomic force microscopy revealed that the particle size and surface roughness of the films increased due to Bi-doping. Optical analysis exhibited the band gap value of 1.40 eV for SnS:Bi (6 at%) which was lower than the band gap value for 0 at% of Bi (1.60 eV). The film has low resistivity of 4.788×10−1 Ω-cm and higher carrier concentration of 3.625×1018 cm−3 was obtained at a doping ratio of 6 at%.  相似文献   

12.
FeS2 thin films were grown on a glass substrate using a physical vapor deposition technique at room temperature. Subsequently, the thin films were annealed in two different atmospheres: vacuum and vacuum-sulfur. In the vacuum-sulfur atmosphere a graphite box was used as sulfur container and the films were sulfurated successfully at 200–350 ºC. It was found that annealing in a vacuum-sulfur atmosphere was indispensable in order to obtain polycrystalline FeS2 thin films. The polycrystalline nature and pure phase were determined by XRD and Raman techniques and the electrical properties by the Hall effect. Using the sulfurating technique, the n-type semiconductor was prepared at 200–350 °C and a p-type at 500 °C. The carrier concentrations were between 1.19×1020 and 2.1×1020 cm−3. The mobility was 9.96–5.25 cm2 V−1 s−1 and the resistivity was 6.31×10−2 to 1.089×10−2 Ω cm. The results obtained from EDS showed that the films prepared in the vacuum-sulfur atmosphere were close to stoichiometric and that the indirect band gap varied between 1.03 and 0.945 eV.  相似文献   

13.
Phosphorus doped amorphous/nanocrystalline silicon (a-Si:H/nc-Si:H) thin films have been deposited by a filtered cathodic vacuum arc (FCVA) technique in the presence of hydrogen gas at different substrate temperatures (Ts) ranging from room temperature (RT) to 350 °C. The films have been characterized by using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, dark conductivity (σD), activation energy (ΔE), optical band gap (Eg) and secondary ion mass spectroscopy. The XRD patterns show that RT grown film is amorphous in nature but high temperature (225 and 350 °C) deposited films exhibit nanocrystalline structure with (111) and (220) crystal orientations. The crystallite size of higher temperature grown silicon film evaluated was between 13 and 25 nm. Raman spectra reveal the amorphous nature of the film deposited at RT, whereas higher temperature deposited films show crystalline nature. The crystalline volume fraction of the silicon film deposited at higher temperatures (225 and 350 °C) was estimated to be 58 and 72%. With the increase of Ts, the bonding configuration changes from mono-hydride to di-hydride as revealed by the FTIR spectra. The values of σD, ΔE and Eg of silicon films deposited at different Ts were found to be in the range of 5.37×10−4–1.04 Ω−1 cm−1, 0.05–0.45 eV and 1.42–1.83 eV, respectively. Photoconduction of 3.5% has also been observed in n-type nc-Si:H films with the response and recovery times of 9 and 12 s, respectively. A n-type nc-Si:H/p-type c-Si heterojunction diode was fabricated which showed the diode quality factor between 1.6 and 1.8.  相似文献   

14.
Thin films of nickel phthalocyanine (NiPc) were prepared by thermal evaporation and the effects of annealing temperature on the structural and optical properties of the samples were studied using different analytical methods. Structural analysis showed that the grain size and crystallinity of NiPc films improved as annealing temperature increased from 25 to 150 °C. Also, maximum grain size (71.3 nm) was obtained at 150 °C annealing temperature. In addition, NiPc films annealed at 150 °C had a very smooth surface with an RMS roughness of 0.41 nm. Optical analysis indicated that band gap energy of films at different annealing temperatures varied in the range of 3.22–3.28 eV. Schottky diode solar cells with a structure of ITO/PEDOT:PSS/NiPc/Al were fabricated. Measurement of the dark current density–voltage (JV) characteristics of diodes showed that the current density of films annealed at 150 °C for a given bias was greater than that of other films. Furthermore, the films revealed the highest rectification ratio (23.1) and lowest barrier height (0.84 eV) demonstrating, respectively, 23% and 11% increase compared with those of the deposited NiPc films. Meanwhile, photoconversion behavior of films annealed at 150 °C under illumination showed the highest short circuit current density (0.070 mA/cm2) and open circuit voltage of (0.55 V).  相似文献   

15.
《Organic Electronics》2007,8(5):631-634
Quaterrylene molecules, which have a planar and highly π-conjugated chemical structure, were deposited on a SiO2 surface, and their thin film structures, including surface morphology and molecular orientation, were examined by atomic force microscopy (AFM) and X-ray diffractometry (XRD). AFM observations revealed the grain size and surface roughness to be closely dependent on the substrate temperature in the range from 27 °C to 200 °C. Particularly at a substrate temperature of 140 °C, grain sizes of up to 6 μm and low surface roughness of 1.67 nm were successfully obtained in the 8 ML-thick film. XRD measurements of the quaterrylene thin film revealed (0 0 l) Bragg reflections, corresponding to a spacing of 1.89 nm. This value coincides with the average height of the terraces of the stepped structure observed in the AFM images. These results clearly demonstrate the quaterrylene molecules to have an upright orientation and that thin films grow as layered structures on the surface. From the full width of half maximum (FWHM) of the XRD rocking curve, the degree of alignment of the molecular planes (mosaicity) was estimated to be 0.09°, which shows that the film has a highly ordered structure.  相似文献   

16.
FeSe2 thin films were prepared at low temperature by thermal annealing at 350 °C during 6 h of sequentially evaporated iron and selenium films under selenium atmosphere. The structural, optical and electrical characteristics were investigated. The roughness of films (~76 nm) was confirmed by AFM images. Moreover, optical band gap of FeSe2, which was evaluated as nearly 1.11 eV and confirmed by the electrical study which yielded a value in the order of 1.08 eV. The electrical conductivity, conduction mechanism, dielectric properties and relaxation model of theses thin films were studied using impedance spectroscopy technique in the frequency range 5 Hz–13 MHz under various temperatures (180–300 °C). Besides, complex impedance and AC conductivity have been investigated on the basis of frequency and temperature dependence.  相似文献   

17.
Sprayed ZnO films were grown on glass at different substrate temperatures from 200 °C to 500 °C and their structural, optical and electrical properties were investigated. All films are polycrystalline with hexagonal wurtzite structure. ZnO films at substrate temperatures above 400 °C appear to be better crystalized with (002) plane as preferential orientation. Optical transmission spectrum shows that ZnO films have high transmission (above 80%) in visible region for substrate temperatures above 400 °C. Photoluminescence spectra at room temperature show an ultraviolet emission and two visible emissions at 2.82 eV and 2.37 eV. The resistivity of ZnO films increases with increasing substrate temperatures (above 400 °C). The ZnO film deposited at 400 °C shows highest figure of merit.  相似文献   

18.
ZnO films were deposited on glass substrates in the temperature range of 350–470 °C under an atmosphere of compressed air or nitrogen (N2) by using ultrasonic spray pyrolysis technique. Structural, electrical and optical properties of the ZnO films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), electrical two-probe and optical transmittance measurements. The ZnO films deposited in the range of 350–430 °C were polycrystalline with the wurtzite hexagonal structure having preferred orientation depending on the substrate temperature. The ZnO films deposited below 400 °C had a preferred (100) orientation while those deposited above 400 °C mostly had a preferred (002) orientation. The resistivity values of ZnO films depended on the types of carrier gas. The ZnO thin films deposited under N2 atmosphere in the range of 370–410 °C showed dense surface morphologies and resistivity values of 0.6–1.1 Ω-cm, a few orders of magnitude lower than those deposited under compressed air. Hydrogen substition in ZnO possibly contributed to decreasing resistivity in ZnO thin films deposited under N2 gas. The Hall measurements showed that the behavior of ZnO films deposited at 410 °C under the N2 atmosphere was n-type with a carrier density of 8.9–9.2×1016 cm-3 and mobility of ~70 cm2/Vs. ZnO thin films showed transmission values at 550 nm wavelength in a range of 70–80%. The values of band gaps extrapolated from the transmission results showed bandgap shrinkage in an order of milli electron volts in ZnO films deposited under N2 compared to those deposited under compressed air. The calculation showed that the bandgap reduction was possibly a result of carrier–carrier interactions.  相似文献   

19.
Y2O3 thin films were grown by atomic layer deposition (ALD) through a heteroleptic liquid (iPrCp)2Y(iPr-amd) precursor at 350 °C. The structural and chemical properties of both as-deposited and annealed Y2O3 films at 500 °C and 700 °C are analyzed by atomic force microscopy for variation in surface roughness, X-ray diffraction for crystalline structure, and X-ray photoelectron spectroscopy for chemical states. The as-deposited Y2O3 film shows the same crystalline orientation along the plane (222), a stoichiometric state, and minimal hydroxylate formation up to 700 °C. Being the dielectric layer in the metal-oxide-semiconductor capacitor, the as-deposited ALD-Y2O3 films with liquid (iPrCp)2Y(iPr-amd) precursor without any post-deposition annealing show the much lower leakage density than ALD-Y2O3 with solid Y(MeCp)3.  相似文献   

20.
About 480 nm thick titanium oxide (TiO2) thin films have been deposited by electron beam evaporation followed by annealing in air at 300–600 °C with a step of 100 °C for a period of 2 h. Optical, electrical and structural properties are studied as a function of annealing temperature. All the films are crystalline (having tetragonal anatase structure) with small amount of amorphous phase. Crystallinity of the films improves with annealing at elevated temperatures. XRD and FESEM results suggest that the films are composed of nanoparticles of 25–35 nm. Raman analysis and optical measurements suggest quantum confinement effects since Raman peaks of the as-deposited films are blue-shifted as compared to those for bulk TiO2 Optical band gap energy of the as-deposited TiO2 film is 3.24 eV, which decreases to about 3.09 eV after annealing at 600 °C. Refractive index of the as-deposited TiO2 film is 2.26, which increases to about 2.32 after annealing at 600 °C. However the films annealed at 500 °C present peculiar behavior as their band gap increases to the highest value of 3.27 eV whereas refractive index, RMS roughness and dc-resistance illustrate a drop as compared to all other films. Illumination to sunlight decreases the dc-resistance of the as-deposited and annealed films as compared to dark measurements possibly due to charge carrier enhancement by photon absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号