首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
Trypanosoma cruzi (T. cruzi) triosephosphate isomerase (TcTIM) is a glycolytic enzyme essential for parasite survival and has been considered an interesting target for the development of new antichagasic compounds. The homodimeric enzyme is catalytically active only as a dimer. Interestingly, significant differences exist between the human and parasite TIMs interfaces with a sequence identity of 52%. Therefore, compounds able to specifically disrupt TcTIM but not Homo sapiens TIM (hTIM) dimer interface could become selective antichagasic drugs. In the present work, the binding modes of 1,2,4-thiadiazol, phenazine and 1,2,6-thiadiazine derivatives to TcTIM were investigated using molecular docking combined with molecular dynamics (MD) simulations. The results show that phenazine and 1,2,6-thiadiazine derivatives, 2 and 3, act as dimer-disrupting inhibitors of TcTIM having also allosteric effects in the conformation of the active site. On the other hand, the 1,2,4-thiadiazol derivative 1 binds into the active site causing a significant decrease in enzyme mobility in both monomers. The loss of conformational flexibility upon compound 1 binding suggests that this inhibitor could be preventing essential motions of the enzyme required for optimal activity. The lack of inhibitory activity of 1 against hTIM was also investigated and seems to be related with the high mobility of hTIM which would hinder the formation of a stable ligand–enzyme complex. This work has contributed to understand the mechanism of action of this kind of inhibitors and could result of great help for future rational novel drug design.  相似文献   

2.
3.
4.
5.
Human immune virus subtype C is the most widely spread HIV subtype in Sub-Sahara Africa and South Africa. A profound structural insight on finding potential lead compounds is therefore necessary for drug discovery. The focus of this study is to rationalize the nine Food and Drugs Administration (FDA) HIV antiviral drugs complexed to subtype B and C-SA PR using ONIOM approach. To achieve this, an integrated two-layered ONIOM model was used to optimize the geometrics of the FDA approved HIV-1 PR inhibitors for subtype B. In our hybrid ONIOM model, the HIV-1 PR inhibitors as well as the ASP 25/25' catalytic active residues were treated at high level quantum mechanics (QM) theory using B3LYP/6-31G(d), and the remaining HIV PR residues were considered using the AMBER force field. The experimental binding energies of the PR inhibitors were compared to the ONIOM calculated results. The theoretical binding free energies (?Gbind) for subtype B follow a similar trend to the experimental results, with one exemption. The computational model was less suitable for C-SA PR. Analysis of the results provided valuable information about the shortcomings of this approach. Future studies will focus on the improvement of the computational model by considering explicit water molecules in the active pocket. We believe that this approach has the potential to provide much improved binding energies for complex enzyme drug interactions.  相似文献   

6.
Dengue virus is a major issue of tropical and sub-tropical regions. Dengue virus has been the cause behind the major alarming epidemics in the history with mass causalities from the decades. Unavailability of on-shelf drugs for the prevention of further proliferation of virus inside the human body results in immense number of deaths each year. This issue necessitates the design of novel anti-dengue drug. The protease enzyme pathway is the critical target for drug design due to its significance in the replication, survival and other cellular activities of dengue virus. Therefore, approximately eighteen million compounds from the ZINC database have been virtually screened against nonstructural protein 3 (NS3). The incremental construction algorithm of Glide docking program has been used with its features high throughput virtual screening (HTVS), standard precision (SP), extra precision (XP) and in combination of Prime module, induced fit docking (IFD) approach has also been applied. Five top-ranked compounds were then selected from the IFD results with better predicted binding energies with the catalytic triad residues (His51, Asp75, and Ser135) that may act as potential inhibitors for the underlying target protease enzyme. The top-ranked compounds ZINC95518765, ZINC44921800, ZINC71917414, ZINC39500661, ZINC36681949 have shown the predicted binding energies of −7.55, −7.36, −8.04, −8.41, −9.18 kcal/mol, respectively, forming binding interactions with three catalytically important amino acids. Top-docking poses of compounds are then used in molecular dynamics (MD) simulations. In computational studies, our proposed compounds confirm promising results against all the four serotypes of dengue virus, strengthening the opportunity of these compounds to work as potential on-shelf drugs against dengue virus. Further experimentation on the proposed compounds can result in development of strong inhibitors.  相似文献   

7.
Since the CC-chemokine receptor 5 (CCR5) was identified as a major co-receptor for human immunodeficiency virus type 1 (HIV-1) entry into a host cell, CCR5-targetting HIV entry inhibitors have been developed and some of them are currently in clinical trials. Most of these inhibitors also inhibit the physiological chemokine reaction function of CCR5, which is so far considered to be safe to patients based on the observation that individuals that naturally lack CCR5 do not show apparent health problems. Nevertheless, to minimize the toxicity and side effects, it would be ideal to preserve the chemokine receptor activity. In this work, we simulated the flexible docking of two small molecule inhibitors to CCR5 in a solvated phospholipid bilayer environment. One of the inhibitors, aplaviroc has a unique feature of preserving two of the natural chemokine ligands binding to CCR5 and subsequent activation whereas the other one, SCH-C fully blocks chemokine-CCR5 interactions. Our results revealed significantly different binding modes of these two inhibitors although both established extensive interaction networks with CCR5. Comparison of the different binding modes suggests that avoiding the deep insertion of inhibitors into the transmembrane helix bundle may be able to preserve chemokine-CCR5 interactions. These results could help design HIV co-receptor activity-specific inhibitors.  相似文献   

8.
β-secretase (BACE1) is an aspartyl protease that processes the β-amyloid peptide in the human brain in patients with Alzheimer’s disease. There are two catalytic aspartates (ASP32 and ASP228) in the active domain of BACE1. Although it is believed that the net charge of the Asp dyad is −1, the exact protonation state still remains a matter of debate. We carried out molecular dynamic (MD) simulations for the four protonation states of BACE1 proteins. We applied Glide docking studies to 21 BACE1 inhibitors against the MD extracted conformations. The dynamic results infer that the protein/ligand complex remains stable during the entire simulation course for HD32D228 model. The results show that the hydrogen bonds between the inhibitor and the Asp dyad are maintained in the 10,000th ps snapshot of HD32D228 model. Our results also reveal the significant loop residues in maintaining the active binding conformation in the HD32D228 model. Molecular docking results show that the HD32D228 model provided the best enrichment factor score, suggesting that this model was able to recognize the most active compounds. Our observations provide an evidence for the preference of the anionic state (HD32D228) in BACE1 binding site and are in accord with reported computational data. The protonation state study would provide significant information to assign the correct protonation state for structure-based drug design and docking studies targeting the BACE1 proteins as a tactic to develop potential AD inhibitors.  相似文献   

9.
As an important target for the development of novel anti-AIDS drugs, HIV-1 integrase (IN) has been widely concerned. However, the lack of a complete accurate crystal structure of HIV-1 IN greatly blocks the discovery of novel inhibitors. In this work, an effective HIV-1 IN inhibitor screening platform, namely PFV IN, was filtered from all species of INs. Next, the 40.8% similarity with HIV-1 IN, as well as the high efficiency of virtual screening and the good agreement between calculated binding free energies and experimental ones all proved PFV IN is a promising screening platform for HIV-1 IN inhibitors. Then, the molecular recognition mechanism of PFV IN by its substrate viral DNA and six naphthyridine derivatives (NRDs) inhibitors was investigated through molecular docking, molecular dynamics simulations and water-mediated interactions analyses. The functional partition of NRDs IN inhibitors could be divided into hydrophobic and hydrophilic ones, and the Mg2+ ions, water molecules and conserved DDE motif residues all interacted with the hydrophilic partition, while the bases in viral DNA and residues like Tyr212, Pro214 interacted with the hydrophobic one. Finally, the free energy landscape (FEL) and cluster analyses were performed to explore the molecular motion of PFV IN-DNA system. It is found that the association with NRDs inhibitors would obviously decrease the motion amplitude of PFV IN-DNA, which may be one of the most potential mechanisms of IN inhibitors. This work will provide a theoretical basis for the inhibitor design based on the structure of HIV-1 IN.  相似文献   

10.
Drug fluorination has the potential to reproduce useful drugs with decreasing the side effect of them. Identifying the effect of this improvement on the chemical properties and biological interactions of drug symbolizes a meaningful progress in drug design. Here the fluorination of Donepezil as an anti-Alzheimer drug, including 7 fluorinated derivatives of it, was investigated computationally. In the first part of our calculations, the most important chemical properties of drug that affects the drug efficiency were investigated by applying the M06/6–31 g (d, p) and M062X/6–31 g (d, p) levels of theories. Findings showed that the fluorine substitution changed the drug stability as altered the solubility and molecular polarity. Furthermore, the intramolecular hydrogen bonding, charge distribution and electron delocalization of the drug were affected by this replacement. In the second section, the effect of fluorination on the drug⋯enzyme interactions was evaluated by using two effective methods Based on the molecular docking and density functional theory (DFT) calculations fluorine substitution influenced the Donepezil⋯Acetylcholinesterase interactions. Calculated binding energies by two computational methods displayed that the fluorine replacement changed the binding affinity of drug. Finally, the most significant non-bonded interactions between drugs and involved residues were investigated by bond length data analysis.  相似文献   

11.
Molecular docking is a Bioinformatics method based on predicting the position and orientation of a small molecule or ligand when it is bound to a target macromolecule. This method can be modeled as an optimization problem where one or more objectives can be defined, typically around an energy scoring function. This paper reviews developments in the field of single- and multi-objective meta-heuristics for efficiently addressing molecular docking optimization problems. We comprehensively analyze both problem formulations and applied techniques from Evolutionary Computation and Swarm Intelligence, jointly referred to as Bio-inspired Optimization. Our prospective analysis is supported by an experimental study dealing with a molecular docking problem driven by three conflicting objectives, which is tackled by using different multi-objective heuristics. We conclude that genetic algorithms are the most widely used techniques by far, with a noted increasing prevalence of particle swarm optimization in the last years, being these last techniques particularly adequate when dealing with multi-objective formulations of molecular docking problems. We end this experimental survey by outlining future research paths that should be under target in this vibrant area.  相似文献   

12.
Aminoglycoside mimetics inhibit bacterial translation by interfering with the ribosomal decoding site. To elucidate the structural properties of these compounds important for antibacterial activity, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were applied to a set of 56 aminoglycosides mimetics. The successful CoMFA model yielded the leave-one-out (LOO) cross-validated correlation coefficient (q(2)) of 0.708 and a non-cross-validated correlation coefficient (r(2)) of 0.967. CoMSIA model gave q(2)=0.556 and r(2)=0.935. The CoMFA and CoMSIA models were validated with 36 test set compounds and showed a good r(pred)(2) of 0.624 and 0.640, respectively. Contour maps of the two QSAR approaches show that electronic effects dominantly determine the binding affinities. These obtained results were agreed well with the experimental observations and docking studies. The results not only lead to a better understanding of structural requirements of bacterial translation inhibitors but also can help in the design of novel bacterial translation inhibitors.  相似文献   

13.
Molecular graphics and modeling methods illustrated the chemical background of the a priori approach from part I, and visualized steric and electronic enzyme-inhibitor relationships at qualitative and quantitative level for 34 and its derivatives. The enzyme-inhibitor electron density overlap occurs at 1.5–5.5 Å cut-off distance, beyond van der Waals radii. Derivatives of 34 exhibit linear relationships between biological activity, molecular size and number of intermolecular interactions.  相似文献   

14.
Based on the hit structures that have been identified in our previous studies against EGFR and HER2, new potential inhibitors that share the same scaffold of the hit structures are designed and screened in silico. Insights into understanding the potential inhibitory effect of the new inhibitors against both EGFR and HER2 receptors is obtained using extended molecular dynamics (MD) simulations and different scoring techniques. The binding mechanisms and dynamics are detailed with respect to two approved inhibitors against EGFR (lapatinib) and HER2 (SYR127063). The best scoring inhibitor (T9) is chosen for additional in silico investigation against both the wild-type and T790M mutant strain of EGFR and the wild-type HER2. The results reveal that certain substitution patterns increase the stability and assure stronger binding and higher H-bond occupancy of the conserved water molecule that is commonly observed with kinase crystal structures. Furthermore, the new inhibitor (T9) forms stable interactions with the mutant strain as a direct consequence of the enhanced ability to form additional hydrogen bonding interactions with binding site residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号