共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
针对传统的各向异性扩散去噪方法存在的导致图像细节丢失的问题,提出了一种基于平稳小波域的各向异性扩散图像去噪方法。该方法根据平稳小波变换的特性,通过在高频和低频子带上选用不同的梯度门限进行各向异性扩散,然后进行重构得到去噪后的结果图像。实验结果表明,该方法在有效去除噪声的同时,图像细节保留较好,去噪后的图像具有更好的质量。 相似文献
4.
5.
基于图像分解的多核非线性扩散去噪方法 总被引:2,自引:0,他引:2
研究了一种基于图像分解的多核非线性扩散去噪方法,利用两个非线性扩散模型分别提取图像的主信号和细节信息。先建立一个基于边缘定向的非线性扩散模型,实现对图像的主信号的提取。然后利用P—M扩散方程提取残余图像中的高频信号。将两步处理得到的信号进行合成,得到最后的处理结果。该方法能充分利用各个不同模型的优势,在整幅图像上均具有较好的处理效果。仿真计算结果表明,经该方法处理后的图像与现有的非线性扩散去噪方法相比,其噪声抑制更充分、边缘更清晰、峰值信噪比更高。 相似文献
6.
7.
图像去噪过程中,为了在有效平滑噪声的同时较好地保护图像的边缘和细节,在Cattle平滑模型基础上,对扩散系数作出改进,提出了更有效的自适应去噪模型。该模型不仅针对不同的梯度大小采用了不同的扩散系数,而且将边缘锐化因子二阶偏导引入到扩散系数中。而在图像质量评判标准中,提出了基于相关系数函数的最佳停止时间评判准则。实验结果表明,改进的模型优于C模型,且能更好地吻合评判准则。 相似文献
8.
在对医学图像去噪的同时保留边缘信息,对于后期的诊断具有重要的意义。分析了PM和Catte算法
以及它们的不足,提出了一种基于边缘扩散的非线性去噪方法,通过边缘检测把图像分为边缘和非边缘两部分,
非边缘区域通过各向同性算法去噪;边缘区域通过各向异性算法去噪,改进扩散形式,只沿边缘方向扩散去噪。
实验表明方法非常有效,带噪声的医学图像经过改进后的算法去噪处理,图像质量得到明显的改善。 相似文献
9.
A new feature-preserving nonlinear anisotropic diffusion for denoising images containing blobs and ridges 总被引:1,自引:0,他引:1
Blobs and ridges underlie many important features in biological, biometric and remote sensing images. These images are likely to be corrupted by noise, such as live cells in fluorescent biological images, ridges and valleys in fingerprints and moving targets in synthetic aperture radar and infrared images. In this paper we present a diffusion method for denoising low-signal-to-ratio images containing blob and ridge features. A commonly used denoising method makes use of edge information in an image to achieve a good balance between noise removal and feature preserving. However, if edges are partly lost to a certain extent or contaminated severely by noise, such an approach may not be able to preserve these features, leading to loss of important information. To overcome this problem, we propose a novel second-order nonlocal derivative as a robust blob and ridge detector and incorporate it into a diffusion process to form a novel feature-preserving nonlinear anisotropic diffusion model. Experiments show that the new diffusion filter outperforms many popular filters for preserving blobs and ridges, reducing noise and minimizing artifacts. 相似文献
10.
针对各向异性扩散算法不能有效区分强噪声和弱边缘的缺点,提出了一种基于图像局部统计特征改进的算法。该算法在对图像进行各向异性扩散去噪的过程中,使用梯度阈值找到图像中灰度变化较大的点,再通过计算局部方差和局部去心方差的差值判断该点是否为噪声点,若是噪声点则使用均值滤波处理。对仿真图像和临床超声图像的实验结果表明:与传统的各向异性扩散算法相比,改进的算法在图像去噪和特征保留的能力上得到了良好的提升。 相似文献
11.
研究了基于图像特征方向的正交坐标系,分析了在此框架下的各向异性扩散图像去噪原理。然后根据人类视觉系统的一些特性提出了一种改进的各向异性扩散方法。该方法避免了各向异性扩散方程的不适定问题。实验结果表明,该方法在噪声消除和边缘保留方面能获得较好的效果。 相似文献
12.
针对图像去噪过程中存在边缘保持与噪声抑制之间的矛盾,提出了一种基于变指数的片相似性扩散图像降噪算法。算法基于变指数的自适应降噪模型,引入片相似性的思想,构造出新的边缘检测算子和扩散系数函数。传统的各项异性扩散图像降噪算法利用单个像素点的灰度相似性(或梯度信息)检测边缘,不能很好地保持图像的弱边缘和纹理信息。而所提算法利用邻域像素的灰度相似性,可以在滤除图像噪声的同时,保持更多的细节信息。仿真结果表明,与其他传统的基于偏微分方程(PDE)的图像降噪算法相比,该算法将信噪比(SNR)和峰值信噪比(PSNR)提高至16.602480dB和31.284672dB,具有良好的抗噪性;同时视觉效果较好,保持了更多的弱边缘和纹理等细节特征,在噪声抑制与边缘保持之间取得了较好的权衡。 相似文献
13.
14.
基于偏微分方程的医学超声图像去噪方法 总被引:1,自引:0,他引:1
研究了各向异性扩散方程在医学超声图像去噪中的应用。在理论上对去噪原理进行了分析,并在此基础上采用改进的针对乘性噪声的各向异性扩散算法对医学超声图像去噪,实验结果表明,该方法在有效去除噪声的同时较好地保留了医学超声图像中的重要细节信息,使图像的细节部分清晰。该方法可以有效地去除超声图像斑纹噪声,提高图像的质量。 相似文献
15.
A novel method is proposed to reduce speckle in ultrasound images. Based on the assumption of Rayleigh distribution of speckle, a Rayleigh-trimmed filter is first proposed to estimate the relative standard deviations of local signals and the results are used to determine the parameter that controls an alpha-trimmed mean filter for suppressing the primary noise. Then the anisotropic diffusion is subsequently applied to further reduce noise while enhancing features and structures in the original image. We also extend the proposed method to three-dimensional space by introducing time as one additional dimension. The proposed method effectively utilizes the statistical characteristics of speckle and the two-step despeckling algorithm reduces speckle significantly while retaining important features. The effectiveness of the proposed method is well demonstrated by experiments on both simulated and real ultrasound images. 相似文献
16.
从理论上分析了用P-M扩散方法去除图像噪声的原理与特点,分析了P-M扩散中参数k的选取问题,讨论了去噪应用中梯度算子的数值计算方法,在传统的p-M扩散方法的基础上得到了改进的P-M扩散算法。实验结果表明:与传统算法相比,改进的P-M扩散算法能有效抑制图像噪声,更好地保持边缘细节。 相似文献
17.
改进的LIP偏微分方程图像去噪方法 总被引:1,自引:0,他引:1
针对对数图像处理-全变分(LIP_TV)去噪模型存在的不足,提出一种改进的LIP偏微分方程去噪方法。首先基于LIP数学理论,在LIP梯度算子中,引入四方向导数信息,得到改进的LIP梯度算子以全面客观地度量图像信息,更好地控制扩散过程。然后利用人类视觉系统的结构化特性,用噪声可见度函数构造新的保真项系数,进一步保持了图像的边缘细节并避免了人为估计噪声水平。理论分析和实验结果表明,该改进方法能够更好地去除噪声和保持图像边缘细节特征,在视觉效果和客观评价指标上都明显优于LIP_TV方法。 相似文献
18.
Shin-Min Chao 《Pattern recognition》2010,43(5):1917-6849
In this paper, an anisotropic diffusion model with a generalized diffusion coefficient function is presented for defect detection in low-contrast surface images and, especially, aims at material surfaces found in liquid crystal display (LCD) manufacturing. A defect embedded in a low-contrast surface image is extremely difficult to detect, because the intensity difference between the unevenly illuminated background and the defective region is hardly observable and no clear edges are present between the defect and its surroundings.The proposed anisotropic diffusion model provides a generalized diffusion mechanism that can flexibly change the curve of the diffusion coefficient function. It adaptively carries out a smoothing process for faultless areas and performs a sharpening process for defect areas in an image. An entropy criterion is proposed as the performance measure of the diffused image and then a stochastic evolutionary computation algorithm, particle swarm optimization (PSO), is applied to automatically determine the best parameter values of the generalized diffusion coefficient function. Experimental results have shown that the proposed method can effectively and efficiently detect small defects in various low-contrast surface images. 相似文献
19.
We address the problems of noise and huge data sizes in microarray images. First, we propose a mixture model for describing the statistical and structural properties of microarray images. Then, based on the microarray image model, we present methods for denoising and for compressing microarray images. The denoising method is based on a variant of the translation-invariant wavelet transform. The compression method introduces the notion of approximate contexts (rather than traditional exact contexts) in modeling the symbol probabilities in a microarray image. This inexact context modeling approach is important in dealing with the noisy nature of microarray images. Using the proposed denoising and compression methods, we describe a near-lossless compression scheme suitable for microarray images. Results on both denoising and compression are included, which show the performance of the proposed methods. Further experiments using the results of the proposed near-lossless compression scheme in gene clustering using cell-cycle microarray data for S. cerevisiae showed a general improvement in the clustering performance, when compared with using the original data. This provides an indirect validation of the effectiveness of the proposed denoising method. 相似文献
20.
针对P-M非线性扩散模型以及自蛇模型对图像滤波的不足,为了充分利用两种模型各自的优势,提出了一种新的基于自蛇模型与P-M扩散模型相混合的去噪方法,同时在其扩散方程中添加了忠诚项,这样噪声去除与边缘保留就可以得到一个较好的效果。最后实验结果表明,该方法既能有效去除图像噪声,也能很好地保持图像的边缘等细节信息。 相似文献