共查询到20条相似文献,搜索用时 15 毫秒
1.
针对当前全景图像显著性检测方法存在检测精度偏低、模型收敛速度慢和计算量大等问题,该文提出一种基于鲁棒视觉变换和多注意力的U型网络(URMNet)模型。该模型使用球形卷积提取全景图像的多尺度特征,减轻了全景图像经等矩形投影后的失真。使用鲁棒视觉变换模块提取4种尺度特征图所包含的显著信息,采用卷积嵌入的方式降低特征图的分辨率,增强模型的鲁棒性。使用多注意力模块,根据空间注意力与通道注意力间的关系,有选择地融合多维度注意力。最后逐步融合多层特征,形成全景图像显著图。纬度加权损失函数使该文模型具有更快的收敛速度。在两个公开数据集上的实验表明,该文所提模型因使用了鲁棒视觉变换模块和多注意力模块,其性能优于其他6种先进方法,能进一步提高全景图像显著性检测精度。 相似文献
2.
Many salient object detection approaches share the common drawback that they cannot uniformly highlight heterogeneous regions of salient objects, and thus, parts of the salient objects are not discriminated from background regions in a saliency map. In this paper, we focus on this drawback and accordingly propose a novel algorithm that more uniformly highlights the entire salient object as compared to many approaches. Our method consists of two stages: boosting the object-level distinctiveness and saliency refinement. In the first stage, a coarse object-level saliency map is generated based on boosting the distinctiveness of the object proposals in the test images, using a set of object-level features and the Modest AdaBoost algorithm. In the second stage, several saliency refinement steps are executed to obtain a final saliency map in which the boundaries of salient objects are preserved. Quantitative and qualitative comparisons with state-of-the-art approaches demonstrate the superior performance of our approach. 相似文献
3.
4.
针对当前基于流形排序的显著性检测算法缺乏子空间信息的挖掘和节点间传播不准确的问题,该文提出一种基于低秩背景约束与多线索传播的图像显著性检测算法.融合颜色、位置和边界连通度等初级视觉先验形成背景高级先验,约束图像特征矩阵的分解,强化低秩矩阵与稀疏矩阵的差异,充分描述子空间结构信息,从而有效地将前景与背景分离;引入稀疏感知和局部平滑等线索改进传播矩阵的构建,增强颜色特征出现概率低的节点的传播能力,加强局部区域内节点的关联性,准确凸显节点的属性,得到紧密且连续的显著区域.在3个基准数据集上的实验结果与图像检索领域的应用证明了该文算法的有效性和鲁棒性. 相似文献
6.
7.
随着互联网产业的快速发展,以图片、视频为载体的新媒体在网络空间中的应用越来越广泛,已逐步成为使用率最高的媒体形态。通过对网络空间治理现状进行分析,阐述了基于人工智能的系列视图像内容安全技术,以此为核心,紧密围绕网络安全与信息化,聚焦内容安全,提出了将人工智能技术用于网络空间治理的新媒体内容监测综合解决方案,该方案将助力于行业监管部门的网络空间内容安全治理工作。 相似文献
9.
Extracting accurate foreground objects from a scene is an essential step for many video applications. Traditional background subtraction algorithms can generate coarse estimates, but generating high quality masks requires professional softwares with significant human interventions, e.g., providing trimaps or labeling key frames. We propose an automatic foreground extraction method in applications where a static but imperfect background is available. Examples include filming and surveillance where the background can be captured before the objects enter the scene or after they leave the scene. Our proposed method is very robust and produces significantly better estimates than state-of-the-art background subtraction, video segmentation and alpha matting methods. The key innovation of our method is a novel information fusion technique. The fusion framework allows us to integrate the individual strengths of alpha matting, background subtraction and image denoising to produce an overall better estimate. Such integration is particularly important when handling complex scenes with imperfect background. We show how the framework is developed, and how the individual components are built. Extensive experiments and ablation studies are conducted to evaluate the proposed method. 相似文献
10.
《Signal Processing: Image Communication》2014,29(3):434-447
Salient object detection is essential for applications, such as image classification, object recognition and image retrieval. In this paper, we design a new approach to detect salient objects from an image by describing what does salient objects and backgrounds look like using statistic of the image. First, we introduce a saliency driven clustering method to reveal distinct visual patterns of images by generating image clusters. The Gaussian Mixture Model (GMM) is applied to represent the statistic of each cluster, which is used to compute the color spatial distribution. Second, three kinds of regional saliency measures, i.e, regional color contrast saliency, regional boundary prior saliency and regional color spatial distribution, are computed and combined. Then, a region selection strategy integrating color contrast prior, boundary prior and visual patterns information of images is presented. The pixels of an image are divided into either potential salient region or background region adaptively based on the combined regional saliency measures. Finally, a Bayesian framework is employed to compute the saliency value for each pixel taking the regional saliency values as priority. Our approach has been extensively evaluated on two popular image databases. Experimental results show that our approach can achieve considerable performance improvement in terms of commonly adopted performance measures in salient object detection. 相似文献
11.
在检测图像显著性区域的领域中,背景优先是一个较新的思路,但会遇到背景鉴别这个具有挑战性的难题。该文提出背景真实性的判断问题,在探索的过程中发现背景通常具有连续性的特征,根据这一特性实现了判定背景的方法,并将判断的结果作为显著性先验值应用于后继的计算中,最终结果的准确性和正确性得到有效提高。该文首先采用均值漂移(MS)分割算法将图片预分为超像素,计算所有超像素的初始显著值;随后提取原图的4个边界条,计算每两条之间的色彩直方图距离,判定小于预设阈值的两条边界作为真的背景,选择它们作为优先边界,计算先验显著性值;最后进行显著性计算,得到最终的显著图。实验结果表明,该算法能够准确检测出显著性区域,与其他6种算法相比具有较大优势。 相似文献
12.
边缘检测是图像处理过程的关键技术.由于医学图像的特殊性,检测边缘的准确性对疾病的诊断和治疗有着重大的影响.针对传统Sobel算法存在定位不精确、提取边缘较粗等不足,提出了一种改进算法.算法在传统Sobel算子模板基础上增加了45°方向和135°方向两个模板,提高了边缘定位的精度,采取局部梯度均值作为阈值对初始梯度图像进行局部梯度筛选,局部弱边缘得到增强,然后对处理后梯度图像进行细化和提取,得到边缘图像.实验证明,算法获取的图像边缘与传统Sobel算法相比,具有定位准确、边连续性好和边缘较细等优点,在医学图像处理中具有一定的实用性. 相似文献
13.
14.
经典的高斯混合背景模型中,高斯分量的个数是固定的,近邻像素间的相关性也没有被考虑。作为对这种模型的改进,该文利用熵图像来度量背景像素亮度分布的复杂程度,进而给出了根据熵图像为各像素选择高斯函数个数的方法,在保证检测精度的前提下节约计算资源;并利用隶属度来表示像素属于背景的可能性,通过融合各像素邻域的局部信息来对其进行有效的分类,使得分类决策的结果更可靠,而计算量却增加不多。多种真实场景下的实验证明了这种算法在计算速度和精度上的良好性能。 相似文献
15.
针对自然环境下运动目标检测时相机抖动问题,该文提出一种背景自适应方案。首先用Harris算子检测背景帧和当前帧感兴趣区域的角点,并在小范围内采用相关法和松弛法获取若干稳定的匹配点对。然后通过匹配点对的偏移量来估计相机的抖动参数,恢复出与当前帧匹配的背景帧。最后使用基于多分辨率金字塔模型的背景差分算法来检测运动目标,去除环境中的动态背景噪声和图像模糊引入的较小的相机偏移量估计误差。用公共测试图像的相机抖动序列对该算法进行了验证,并与当前较为先进的算法定性和定量地进行了比较,实验结果表明,该算法可以有效地解决自然环境下相机抖动问题,检测效果评价参数优于当前的算法。 相似文献
16.
人类视觉注意机制在目标检测中的应用 总被引:22,自引:1,他引:22
根据人类视觉感知理论,在介绍了两种比较有代表性的视觉注意模型的基础上,采用bottom—up控制策略的预注意机制和top—down控制策略的注意机制,提出了一种适用于自动目标识别的目标检测算法。从输入图像出发,采用Gabor算子建立多尺度、多方位的多通道图像,通过全波整流和各通道间的对比度增益控制,得到多尺度、多方位的方位特征图,这些特征图的线性组合则为显著性图。给出了仅采用bottom—up控制策略的船舶目标检测实验结果,待检测目标在显著性图中得到明显增强,有利于检测的实现。 相似文献
17.
He Deng Jianguo Liu Hong Li 《Journal of Infrared, Millimeter and Terahertz Waves》2009,30(11):1205-1215
Under the complicated background of infrared image, the small target detection is a vital challenging task in modern military.
In order to solve this problem, a novel method based on the empirical mode decomposition (EMD) is proposed in the paper, to
detect small targets under complicated sea-sky background. The detection process contains two steps: the first step is to
suppress the sea-sky background of the infrared image based on EMD; the second step is to segment the target from the background
suppressed image through a threshold. The application of infrared images has shown that the performance of the algorithm can
detect infrared small target under sea-sky background exactly. Compared with wavelet transformation, the testing results based
on EMD method achieve tantamount results wavelet transformation, and even better in some respects. The simulations show that
EMD method presented in this paper appears instructive for both theoretical and practical points of view. 相似文献
18.
传统显著性目标检测方法常假设只有单个显著性目标,其效果依赖显著性阈值的选取,并不符合实际应用需求。近来利用目标检测方法得到显著性目标检测框成为一种新的解决思路。SSD模型可同时精确检测多个不同尺度的目标对象,但小尺寸目标检测精度不佳。为此,该文引入去卷积模块与注意力残差模块,构建了面向多显著性目标检测的DAR-SSD模型。实验结果表明,DAR-SSD检测精度显著高于SOD模型;相比原始SSD模型,在小尺度和多显著性目标情形下性能提升明显;相比MDF和DCL等深度学习框架下的方法,也体现了复杂背景情形下的良好检测性能。 相似文献
19.
丁习文;程宏昌;苏悦;闫磊;杨晔;党小刚 《红外技术》2024,46(5):608-616
传统数据增强方法容易过拟合,为了解决紫外像增强器视场瑕疵图像数据集样本不平衡的问题,提升基于深度学习的条纹状瑕疵识别精度,提出了一种基于深度卷积生成对抗网络(Deep Convolution Generative Adversarial Network,DCGAN)的紫外像增强器视场瑕疵图像生成方法。通过对DCGAN进行损失函数的改进以及添加卷积注意力机制的优化,建立了紫外像增强器视场瑕疵图像生成模型,成功实现了紫外像增强器视场瑕疵图像的生成。随后,利用图像质量评价指标以及瑕疵检测模型来验证生成图像的有效性。实验结果显示,生成的紫外像增强器视场瑕疵图像可以满足使用需求,将生成图像融合到真实图像中再输入瑕疵检测模型可提高其检测精度。这一研究成果为三代微光像增强器和紫外像增强器的基于深度学习的视场瑕疵检测提供了技术支撑。 相似文献
20.
传统数据增强方法容易过拟合,为了解决紫外像增强器视场瑕疵图像数据集样本不平衡的问题,提升基于深度学习的条纹状瑕疵识别精度,提出了一种基于深度卷积生成对抗网络(Deep Convolution Generative Adversarial Network,DCGAN)的紫外像增强器视场瑕疵图像生成方法。通过对DCGAN进行损失函数的改进以及添加卷积注意力机制的优化,建立了紫外像增强器视场瑕疵图像生成模型,成功实现了紫外像增强器视场瑕疵图像的生成。随后,利用图像质量评价指标以及瑕疵检测模型来验证生成图像的有效性。实验结果显示,生成的紫外像增强器视场瑕疵图像可以满足使用需求,将生成图像融合到真实图像中再输入瑕疵检测模型可提高其检测精度。这一研究成果为三代微光像增强器和紫外像增强器的基于深度学习的视场瑕疵检测提供了技术支撑。
相似文献