首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
In order to explore the agonistic activity of small-molecule agonists to GPR40, AutoDock and GROMACS software were used for docking and molecular dynamics studies. A molecular docking of eight structurally diverse agonists (six carboxylic acids (CAs) agonist, and two non-carboxylic acids (non-CAs) agonist) was performed and the differences in their binding modes were investigated. Moreover, a good linear relationship based on the predicted binding affinities (pKi) determined by using AutoDock and experimental activity values (pEC50) was obtained. Then, the 10 ns molecular dynamics (MD) simulations of three obtained ligand–receptor complexes embedded into the phospholipid bilayer were carried out. The position fluctuations of the ligands located inside the transmembrane domain were explored, and the stable binding modes of the three studied agonists were determined. Furthermore, the residue-based decomposition of interaction energies in three systems identified several critical residues for ligand binding.  相似文献   

2.
Transthyretin (TTR) is a protein whose aggregation and deposition causes amyloid diseases in human beings. Amyloid fibril formation is prevented by binding of thyroxin (T4) or its analogs to TTR. The MD simulation study of several solvated X-ray structures of apo and holo TTR has indicated the role of a conserved water molecule and its interaction with T4 binding residues Ser117 and Thr119. Geometrical and electronic consequences of those interactions have been exploited to design a series of thyroxin analogs (Mod1–4) by modifying 5′ or 3′ or both the iodine atoms of thyroxin. Binding energy of the designed ligands has been calculated by docking the molecules in tetrameric structure of the protein. Theoretically investigated pharmacological parameters along with the binding energy data indicate the potentiality of 3′,5′-diacetyl-3,5-dichloro-l-thyronine (Mod4) to act as a better inhibitor for TTR-related amyloid diseases.  相似文献   

3.
Recent developments in the target based cancer therapies have identified HSF1 as a novel non oncogenic drug target. The present study delineates the design and molecular docking evaluation of Rohinitib (RHT) — Cantharidin (CLA) based novel HSF1 inhibitors for target-based cancer therapy. Here, we exploited the pharmacophoric features of both the parent ligands for the design of novel hybrid HSF1 inhibitors. The RHT-CLA ligands were designed and characterized for ADME/Tox features, interaction with HSF1 DNA binding domain and their pharmacophoric features essential for interaction. From the results, amino acid residues Ala17, Phe61, His63, Asn65, Ser68, Arg71 and Gln72 were found crucial for HSF1 interaction with the Heat shock elements (HSE). The hybrid ligands had better affinity towards the HSF1 DNA binding domain, in comparison to RHT or CLA and interacted with most of the active site residues. Additionally, the HSF1-ligand complex had a reduced affinity towards HSE in comparison to native HSF1. Based on the results, ligand RC15 and RC17 were non carcinogenic, non mutagenic, completely biodegradable under aerobic conditions, had better affinity for HSF1 (1.132 and 1.129 folds increase respectively) and diminished the interaction of HSF1 with HSE (1.203 and 1.239 folds decrease respectively). The simulation analysis also suggested that the ligands formed a stable complex with HSF1, restraining the movement of active site residues. In conclusion, RHT-CLA hybrid ligands can be used as a potential inhibitor of HSF1 for non-oncogene target based cancer therapy.  相似文献   

4.
BACE1 is an aspartyl protease of pharmacological interest for its direct participation in Alzheimer’s disease (AD) through β-amyloid peptide production. Two aspartic acid residues are present in the BACE1 catalytic region which can adopt multiple protonation states depending on the chemical nature of its inhibitors, i.e., monoprotonated, diprotonated and di-deprotonated states. In the present study a series of protein-ligand molecular dynamics (MD) simulations was carried out to identify the most feasible protonation state adopted by the catalytic dyad in the presence of hydroxyethylamine transition state analogue inhibitors. The MD trajectories revealed that the di-deprotonated state is most prefered in the presence of hydroxyethilamine (HEA) family inhibitors. This appears as a result after evaluating, for all 9 protonation state configurations during the simulation time, the deviations of a set of distances and dihedral angles measured on the ligand, protein and protein-ligand complex with reference to an X-ray experimental BACE1/HEA crystallographic structure. These results will help to clarify the phenomena related to the HEAs inhibitory pathway, and improve HEAs databases’ virtual screening and ligand design processes targeting β-secretase protein.  相似文献   

5.
The structure, dynamic behavior and binding affinity of the inclusion complexes between naringenin and the two cyclodextrins (CDs), β-CD and its 2,6-dimethyl derivative (DM-β-CD), were theoretically studied by multiple molecular dynamics simulations and free energy calculations. Naringenin most likely prefers to bind with CDs through the phenyl ring. Although a lower hydrogen bond formation of naringenin with the 3-hydroxyl group of DM-β-CD (relative to β-CD) was observed, the higher cavity could encapsulate almost the whole naringenin molecule. In contrast for the naringenin/β-CD complex, the phenyl ring feasibly passed through the primary rim resulting in the chromone ring binding inside instead. MM-PBSA/GBSA and QM-PBSA/GBSA binding free energies strongly suggested a greater stability of the naringenin/DM-β-CD inclusion complex. Van der Waals force played an important role as the key guest–host interaction for the complexation between naringenin and each cyclodextrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号