首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CdTe/CdS多晶薄膜太阳能电池正向电流的计算机模拟分析   总被引:1,自引:0,他引:1  
应用数值方法来解CdTe/CdS异质结J-V特性,进而得出其二极管理想因子、激活能以及异质结空间电荷区党度。结果表明,CdTe一侧空间电荷区复合是主导CdTe/CdS异质结传输电流的主要机制。说明在CdTe基太阳能电池制造中,控制多晶薄膜化学缺陷对提高电池能量转换效率的重要意义。  相似文献   

2.
Cadmium telluride (CdTe) with a room-temperature bandgap energy of 1.45 eV has been shown to be the most promising low-cost, thin-film photovoltaic material for terrestrial applications. Significant progress has been made during the past several years, and thin-film CdTe solar cells of > 1 cm2 area with conversion efficiencies higher than 12% have been prepared by several techniques. Thin-film CdTe photovoltaic modules with 10% efficiency have also been produced. They are of the heterojuntion configuration using a transparent conducting semiconductor (TCS) as the window and p-CdTe as the absorber. In this paper, the potential window materials for thin-film CdTe solar cells are discussed. Thus far, cadmium sulphide (CdS) with a bandgap energy of 2.42 eV at room temperature has been found to be best suited for efficient CdTe solar cells. the deposition techniques for p-CdTe films capable of producing efficient solar cells, including close-spaced sublimation (CSS), electrodeposition, screen printing and spraying, are briefly reviewed, and the characteristics of the resulting solar cells are discussed. It is concluded that the efficiency of thin-film CdTe solar cells can be increased to 18-19% in the near-term, leading to 15-16.5% efficient modules.  相似文献   

3.
The role of CdCl2 in prompting recrystallization, grain growth and interdiffusion between CdS and CdTe layers in physical vapor-deposited CdS/CdTe thin-film solar cells is presented. Several CdTe/CdS thin-film samples with different CdTe film thicknesses were treated in air at 415°C for different times with and without a surface coating of CdCl2. The samples were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, x-ray diffractometry and optical absorption. The results show that CdCl2 treatment enhances the recrystallization and diffusion processes, leading to a compositional variation within the CdTe layer due to diffusion of sulfur from the CdS. The highest sulfur concentrations observed after 30 min treatments with CdCl2 at 415°C are near the solubility limit for sulfur in CdTe. The compositional distributions indicated by x-ray diffraction measurements of samples with different CdTe thickness show that the S-rich CdTe1−xSx region lies near the CdTe/CdS interface. A multiple-step mixing process must be inferred to account for the diffraction profiles obtained. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
通过直流磁控溅射法在ITO薄膜上沉积的ZnO薄膜可以作为CdTe太阳电池的高阻层。通过XRD,可见-红外可见光谱仪和四探针法分析了制备薄膜的结构,光学和电学性质。通过紫外光电子能谱和X射线光电子能谱深度刻蚀法分析了ITO/ZnO和ZnO/CdS薄膜的界面性质。结果表明:ZnO 作为高阻层有良好的光学和电学性质。ZnO 薄膜降低了ITO和CdS之间的势垒。 制备出来电池有ZnO(没有ZnO)的能量转换效率和量子效率是12.77% (8.9%) 和 >90% (79%)。 进一步,通过AMPS-1D模拟分析了ZnO薄膜厚度对于CdTe太阳电池的影响。  相似文献   

5.
Low‐cost solution‐processed CdTe nanocrystal (NC) solar cells always suffer from a high interface energy barrier and unbalanced hole/electron transport as well as anisotropic atom diffusion on the CdTe surface due to the limited amount of hole/electron interface materials or the difficulty in interface processing. In this work, a novel strategy is first adopted with gradient electron transport layer (CdS/CdSe) modification in the cathode and a new crosslinkable hole transport polymer (P‐TPA) implantation in the anode. The carrier recombination at interfaces is greatly decreased and thus the carrier collection is increased. Moreover, the light harvesting is improved both in short and long wavelength regions, making Jsc and Voc increase simultaneously. A champion solar cell shows a very high power conversion efficiency of 9.2% and an outstanding Jsc of 25.31 mA cm?2, which are among the highest values for all solution‐processed CdTe NC solar cells with a superstrate structure, and the latter value is even higher than that of traditional thick CdTe thin‐film solar cells (2 µm) via the high temperature close space sublimation method. This work demonstrates that facile surface modifications in both the cathode and anode with stepped extraction and organic–inorganic hybridization are very promising in constructing next‐generation highly efficient NC photovoltaic devices.  相似文献   

6.
II–VI and I–III–VI solar cells are promising for future thin‐film photovoltaics. In this paper, the roles of electron‐beam‐induced current (EBIC) and cathodoluminescence in evaluating the influence of interfaces on those solar cells are reviewed. CdTe and Cu(In,Ga)Se2 (CIGS) are the absorbers of the cells investigated. For CdTe/CdS solar cells, a detailed study has been conducted of the effects of grain boundaries and the Te/CdTe or ZnTe:Cu/CdTe interfaces for back‐contacting. For CIGS solar cells, we have investigated different buffer layer schemes, showing that these interfaces are critical in the definition of the mechanisms for carrier collection. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
On the basis of the continuity equation, the spatial distribution of photogenerated excess electrons in the neutral region of the CdTe layer in a CdS/CdTe heterostructure is analyzed taking into account recombination at the rear surface of the layer. It is demonstrated that, owing to diffusion, excess electrons penetrate deep into the CdTe layer at distances far exceeding the effective penetration length for solar radiation. Calculations of the short-circuit current indicate that, for electron lifetimes of 10?10–10?9 s, typical of thin-film CdS/CdTe solar cells, recombination losses are insignificant if the CdTe layer’s thickness amounts to 3–4 μm but increase dramatically if the thickness is below 1–1.5 μm. In order to eliminate recombination losses in more efficient solar cells where the electron lifetime is ≥10?8 s the absorbing CdTe layer needs to be much thicker.  相似文献   

8.
1% oxygen is incorporated into both CdS and CdTe layers through RF sputtering of CdS/CdTe thin film solar cells. The optical and electrical parameters of the oxygenated and O2-free devices are compared after CdCl2 treatment and annealing in ambient Ar and/or air. The effects of ambient annealing on the electrical and optical properties of the films are investigated using current-voltage characterization, field emission scanning electron microscopy, X-ray diffraction, and optical transmission spectroscopy. The 1% oxygen content can slightly increase the grain size while the crystallinity does not change. Annealing in ambient Ar can increase the transmission rate of the oxygenated devices.  相似文献   

9.
CdTe thin films for solar cell applications have been deposited by close-spaced vapor transport and by hot-wall vacuum evaporation. As-deposited films are p-type with hole densities that increase to values of 1 × 1016cm-3with increasing substrate temperature. A variety of experimental results can be interpreted either in terms of doping by native defects such as cadmium vacancies or doping by diffusion from the graphite substrate, with evidence for self-compensation. Many CdS/CdTe/graphite solar cells have been prepared by vacuum evaporation of CdS onto thin-film CdTe, which have low values ofJ_{O} sim 10^{-9}A/cm2and high values ofJ_{SC} sim 17mA/cm2. The open-circuit voltage is low at 0.48 V for CdS deposition at 300° C, but increases with decreasing CdS deposition temperature. The highest efficiency prepared to date is 6.4 percent. Tile efficiency is limited at present by the fill factor, associated with a total series resistivity in the light of the order of 10 Ω-cm2. Supporting research on low-resistance contacts to p-type CdTe, grain boundary properties and passivation in p-type CdTe bicrystals and thin films, and high-resolution transmission electron microscopy of junction interfaces is briefly described.  相似文献   

10.
In the present work, a brief overview is given on how to apply transmission (TEM) as well as scanning electron microscopy (SEM) and their related techniques (electron diffraction, energy-dispersive X-ray spectrometry, electron energy-loss spectroscopy, electron holography; electron backscatter diffraction, electron-beam-induced current, cathodoluminescence) for the analysis of interfaces between individual layers or extended structural defects in a thin-film stack. All examples given in the present work were recorded on Cu(In, Ga)Se2 thin film solar cells, however, the shown experimental approaches may be used on any similar thin-film semiconductor device. A particular aspect is the application of various techniques on the same identical specimen area, in order to enhance the insight into structural, compositional, and electrical properties. For (aberration-corrected) TEM, the spatial resolutions of such measurements can be as low as on the subnanometer scale. However, when dealing with semiconductor devices, it is often necessary to characterize electrical and optoelectronic properties at larger scales, of few 10 nm up to even mm, for which SEM is more appropriate. At the same time, these larger scales provide also enhanced statistics of the analysis. In the present review, it is also outlined how to apply SEM techniques in combination with scanning-probe and optical microscopy, on the same identical positions. Altogether, a multiscale toolbox is provided for the thorough analysis of structure-property relationships in thin-film solar cells using correlative microscopy approaches.  相似文献   

11.
CdTe solar cells were fabricated by depositing CdTe films on CdS/SnO2/glass substrates in various metalorganic chemical vapor deposition growth ambient with varying Te/Cd mole ratio in the range of 0.02 to 15. The short-circuit current density (Jsc) showed a minimum at a Te/Cd ratio of 0.1 and increased on both sides of this minimum. The open-circuit voltage (Voc) was found to be the highest for the Te-rich growth ambient (Te/Cd∼6)and was appreciably lower (600 mV as opposed to 720 mV) for the stoichiometric and the Cd-rich growth conditions. This pattern resulted in highest cell efficiency (12%) on Te-rich CdTe films. Auger electron spectroscopy revealed a high degree of atomic interdiffusion at the CdS/CdTe interface when the CdTe films were grown in the Te-rich conditions. It was found that the current transport in the cells grown in the Cd-rich ambient was controlled by the tunneling/interface recombination mechanism, but the depletion region recombination became dominant in the Te-rich cells. These observations suggest that the enhanced interdiffusion reduces interface states due to stress reduction or to the gradual transition from CdS to CdTe. The hypothesis of reduced defect density in the CdTe cells grown in the Te-rich conditions is further supported by the high effective lifetime, measured by time-resolved photoluminescence, and the reduced sensitivity of quantum efficiency to forward/light bias.  相似文献   

12.
We report an assessment of the reproducibility of the HF cleaning process and As passivation prior to the nucleation of ZnTe on the Si(211) surface using temperature desorption spectroscopy, ion scattering spectroscopy, and electron spectroscopy. Observations suggest full H coverage of the Si(211) surface with mostly monohydride and small amounts of dihydride states, and that F is uniformly distributed across the top layer as a physisorbed species. Variations in major contaminants are observed across the Si surface and at the CdTe-ZnTe/Si interface. Defects act as getters for impurities present on the Si surface, and some are buried under the CdTe/ZnTe heterostructure. Overall, the data show evidence of localized concentration of major impurities around defects, supporting the hypothesis of a physical model explaining the electrical activation of defects in long-wave infrared (LWIR) HgCdTe/CdTe/Si devices.  相似文献   

13.
研究了低光强下CdTe太阳电池的性能变化.基于经典的CdS/CdTe结构,建立了短路电流、开路电压、填充因子和转换效率等参数与光强之间的关系模型,模拟了0.02~1kW/m2光强范围内的主要参数变化规律.结果表明,随着光强的减小,CdTe电池短路电流呈线性减小,开路电压呈指数下降,填充因子先增大,在0.3 kW/m2附近达到最大值,之后迅速降低;转换效率逐渐恶化.研究结果为CdTe薄膜太阳电池在室外低光强下和室内应用提供了理论基础.  相似文献   

14.
CdS/CdTe太阳电池的背接触   总被引:1,自引:0,他引:1  
磷硝酸腐蚀是一种适宜于工业化生产的背表面刻蚀工艺.文中采用磷硝酸腐蚀CdTe薄膜,并用溴甲醇腐蚀作为对照实验,研究了两种腐蚀对材料性质的影响.随后用真空蒸发法分别沉积了四种背接触层,提出了适宜于工业化生产的背接触技术,并从实验和理论上对两种背接触结构的CdTe太阳电池进行了分析.  相似文献   

15.
Thermoelectric effect spectroscopy and photoluminescence techniques were used to study the defect levels in samples from three crystals of CdTe:In grown by the vertical gradient freeze method. The main goal of the investigation was to study defects, which strongly trap charge carriers or act as recombination centers in order to eliminate them from the technological process. The main difference among detecting and non-detecting samples was the absence of electron traps with a very high capture cross-section and energy 0.6 eV to 0.7 eV, which act as lifetime killers even at low concentrations. Recently published ab initio calculations show a complex of Te antisite and Cd vacancy within this energy range.  相似文献   

16.
本文采用化学水浴法沉积CuxS薄膜,通过改变Cu元素比例研究其对碲化镉电池效率的影响。研究表明化学水浴法沉积的CuxS是非晶的,采用适当退火条件可以使其晶化,随着退火温度的提高,薄膜变得致密且结晶明显。CuxS薄膜厚度对电池性能有很大的影响,结果表明,随着CuxS薄膜厚度增加,电池性能先增加后减少。薄膜厚度为75nm时,CdS/CdTe电池性能最佳,达到了最高转化效率(η)为12.19%,填充因子(FF)为68.82%,开路电压(Voc)为820mV。  相似文献   

17.
Crystal defects of chemical vapor transport grown Hg1−xCdxTe on (100) CdTe structures have been investigated using chemical etching, wavelength-dispersive spectroscopy, x-ray rocking curve, and scanning electron microscopy methods The results indicate that the origin and spatial distribution of the misfit dislocations can be attributed to both the lattice parameter misfit and the inevitable interdiffusion occurring between the substrate and the epitaxial layer. It is proposed that the interdiffusion of Hg along the [100] direction is enhanced by dislocation channels and other defect cores along or near this direction owing to defects on the initial surface of the CdTe substrate. The results indicate that the subgrain boundaries in Hg1−xCdxTe are caused by slight misorientation of the lattices and polygonization of the defects during epitaxial layer growth, and by the propagation of the subgrain boundaries existing in the CdTe substrate.  相似文献   

18.
林鸿生 《光电子技术》1998,18(2):138-142
通过应用Scharfetter-Gummel解法数值求解Poisson方程,对热平衡态p(ZnTe)/i(CdTe)/n(CdS)薄膜太阳能电池进行计算机数值模拟。结果表明,p(ZnTe)/i(CdTe)/n(CdS)的能带结构有利于光生载流子传输与收集,CdTe中高内建场提高了光生载流子通过有源区的输运能力,对CdTe进行适量P型掺杂还能提高其电池的短波收集效率。  相似文献   

19.
薄膜太阳电池是最具发展潜力的新型能源之一,对缓解能源危机、保护人类生存环境提供了一种新的切实可行的方法。综述了目前国际上研究较多的几种薄膜太阳电池的最新进展,包括硅基薄膜(非晶硅、多晶硅)、多元化合物类(碲化镉、铜铟硒、铜铟镓硒、铜锌锡硫等)、有机薄膜太阳电池以及染料敏化太阳电池等。分析并总结了其在成本、转换效率等方面的优劣。为更有效地降低成本及提高电池效率,新技术、新结构的不断创新应该是未来薄膜太阳电池的发展趋势。  相似文献   

20.
It is well known that the large lattice mismatch (>14%) associated with CdTe/Si, CdTe/Ge, and CdTe/GaAs composite substrates, is a great contributor to large dislocation densities and other defects that limit the performance of HgCdTe-based infrared detectors. Though thermal expansion mismatch is another possible contributor to material defects, little work has been done towards documenting and understanding its effects in these systems. Here, we perform studies to determine the relative contributions of lattice and thermal mismatch to CdTe film characteristics, including dislocation density and residual stress. Unannealed and thermally cycled films are characterized using x-ray diffraction, defect decoration, and Nomarski and transmission electron microscopy. For CdTe/Si, the residual stress is consistently observed to be tensile, while for CdTe/Ge and CdTe/GaAs, a compressive residual film stress is measured. We show based on theoretically predicted stress levels that the experimental measurements imply the dominance of thermal mismatch in the residual stress characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号