首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
CuCr0.93Mg0.07O2 thin films were successfully deposited by DC reactive magnetron sputtering at 1123 K from metallic targets. The influence of film thickness on the structural and optoelectronic properties of the films was investigated. X-ray diffraction (XRD) results revealed that all the films had a delafossite structure with no other phases. The optical and electrical properties were investigated by UV–VIS spectrophotometer and Hall measurement, respectively. It was found that the optoelectronic properties exhibited a thickness-dependent behavior. The optical band gap and the average transmittance of the films showed a monotonous decrease with respect to the increase in thickness. The average transmittance in the visible region decreased from 67% to 47% as the thickness increased from ~70 nm to ~280 nm. Simultaneously, the conductivity of the films fell from 1.40 S∙cm−1 to 0.27 S∙cm−1. According to Haacke's figure of merit (FOM), a film with a maximum FOM value of about 1.72×10−7 Ω−1 can be achieved when the thickness is about 70 nm (σ≈ 1.40 S·cm−1 and Tav. ≈67%).  相似文献   

2.
The influences of N2 introduction to a sputtering gas on structural and optical properties of vanadium-doped ZnO (VZO) films, grown by using reactive RF magnetron sputtering on a quartz substrate at room temperature, were investigated. In the VZO films, V doping caused to form a large number of O vacancies (VO) and degraded both the c-axis orientation and optical transmittance. While, on the contrary, the ZnO(002) diffraction intensity of 3.5-at.% VZO films increased adding N2 with a partial pressure ratio (αN2) >2% reaching a maximum at αN2 =5%. The average optical transmittance (wavelengths: 450−800 nm) of the 3.5-at.% VZO films was also improved by the N2 introduction and reached 74% at αN2 =5%. As a result of the analyses of the chemical binding states of the incorporated N atoms via the Raman spectroscopy and XPS, it was confirmed that the O sites were substituted by the N atoms and the amount of incorporated N increased by the high V doping. From the above, the N2 introduction was effective to suppress the VO formation even in room-temperature-grown VZO films, so it enables to improve both the c-axis orientation and optical transmittance.  相似文献   

3.
Thin films of vanadium cerium mixed oxides are good counter-electrodes for electrochromic devices because of their passive optical behavior and very good charge capacity. We deposited thin films of V–Ce mixed oxides on glass substrates by RF magnetron sputtering under argon at room temperature using different power settings. The targets were pressed into pellets of a powder mixture of V2O5 and CeO2 at molar ratios of 2:1, 1:1, and 1:2. For a molar ratio of 2:1, the resulting crystalline film comprised an orthorhombic CeVO3 phase and the average grain size was 89 nm. For molar ratios of 1:1 and 1:2, the resulting films were completely amorphous in nature. Scanning electron microscopy images and energy-dispersive X-ray spectroscopy data confirmed these results. The optical properties of the films were studied using UV-Vis-NIR spectrophotometry. The transmittance and indirect allowed bandgap for the films increased with the RF power, corresponding to a blue shift of the UV cutoff. The average transmittance increased from 60.9% to 85.3% as the amount of CeO2 in the target material increased. The optical bandgap also increased from 1.94 to 2.34 eV with increasing CeO2 content for films prepared at 200 W. Photoacoustic amplitude (PA) spectra were recorded in the range 300–1000 nm. The optical bandgap was calculated from wavelength-dependent normalized PA data and values were in good agreement with those obtained from UV-Vis-NIR data. The thermal diffusivity calculated for the films increased with deposition power. For thin films deposited at 200 W, values of 53.556×10−8, 1.069×10−8, and 0.2198×10−8 m2/s were obtained for 2:1, 1:1, and 1:2 V2O5/CeO2, respectively.  相似文献   

4.
综述了射频磁控溅射制备钛酸锶钡(BST)薄膜的国内外研究动态,详细阐述了溅射工艺参数(电极、溅射气压、氧分压、温度)对BST薄膜微结构和电性能的影响,提出了射频磁控溅射制备BST薄膜中亟待解决的问题。  相似文献   

5.
Zhuo Shiyi  Xiong Yuying  Gu Min 《半导体学报》2009,30(5):052004-052004-4
ZnO films and ZnO:Cu diluted magnetic semiconductor films were prepared by radio frequency magnetron sputtering on Si (111) substrates, with targets of ZnO and Zn0.99Cu0.01 O, respectively. The plasma emission spectra were analyzed by using a grating monochromator during sputtering. The X-ray photoelectron spectroscopy measurements indicate the existence of Zni defect in the films, and the valence state of Cu is 1. The X-ray diffraction measurements indicate that the thin films have a hexagonal wurtzite structure and have a preferred orientation along the c-axis. The vibrating sample magnetometer measurements indicate that the sample is ferromagnetic at room temperature, and the origin of the magnetic behavior of the samples is discussed.  相似文献   

6.
卓世异  熊予莹  顾敏 《半导体学报》2009,30(5):052004-4
ZnO films and ZnO:Cu diluted magnetic semiconductor films were prepared by radio frequency mag-netron sputtering on Si (111) substrates, with targets of ZnO and Zn0.99Cu0.01O, respectively. The plasma emission spectra were analyzed by using a grating monochromator during sputtering. The X-ray photoelectron spectroscopy measurements indicate the existence of Zni defect in the films, and the valence state of Cu is 1+. The X-ray diffraction measurements indicate that the thin films have a hexagonal wurtzite structure and have a preferred orientation along the c-axis. The vibrating sample magnetometer measurements indicate that the sample is ferromagnetic at room temperature, and the origin of the magnetic behavior of the samples is discussed.  相似文献   

7.
RF磁控溅射功率对ZnO:Al薄膜结构和性能的影响   总被引:2,自引:0,他引:2  
采用RF磁控溅射技术以ZnO:Al2O3(2 wt%Al2O3)为靶材在石英玻璃衬底上制备多晶ZnO:Al(AZO)薄膜,通过XRD、AFM、AES以及Hall效应、透射光谱、折射率等手段研究了RF溅射功率(50~300 W)对薄膜的组织结构和电学,光学性能的影响.分析表明:所制备的AZO薄膜具有c轴择优取向,并且通过对不同功率下薄膜载流子浓度与迁移率的研究发现对于室温下沉积的AZO薄膜,晶粒间界中的O原子吸附是影响薄膜电学性能的主要因素.同时发现当功率为250 W时薄膜的电阻率降至最低(3.995×10-3 Ω·cm),可见光区平均透射率为91%.  相似文献   

8.
This study focusses on the investigation of RF power variations (100–300 W) effects on structural, morphological and optical properties of CaCu3Ti4O12 thin film deposited on ITO/glass substrate in a non-reactive atmosphere (Ar). The increase of RF power from 100 W to 300 W led to evolution of (112), (022), (033), and (224) of CCTO XRD peaks. The results indicated that all the films were polycrystalline nature with cubic structure. The crystallite size increased from 20 nm to 25 nm with increasing RF power. FESEM revealed that the films deposited were uniform, porous with granular form, while the grain size increased from 30 to 50 nm. AFM analysis confirmed the increment in surface roughness from 1.6 to 2.3 nm with increasing film grain size. Besides, optical transmittance values decreased to minimum 70% with increasing RF power while optical energy bandgap increased from 3.20 eV to 3.44 eV. Therefore, favorable CCTO thin film properties can be possibly obtained for certain application by controlling RF magnetron sputtering power.  相似文献   

9.
β-SiC thin films have been grown on (100) silicon substrates using reactive magnetron sputtering of a silicon target in an Ar/CH4 mixed plasma. For the first time it has been possible to make gold Schottky diodes on β-SiC grown by reactive magnetron sputtering. Current-voltage measurements showed an ideality factor of 1.27 and a leakage current density of 4 μA/cm2. Capacitance-voltage measurements gave a barrier height of 1.04 eV. The static dielectric constant for β-SiC was determined to be 9.  相似文献   

10.
利用射频磁控溅射法在玻璃基片上制备了Cu2ZnSnS4(CZTS)薄膜,薄膜在室温下生长,再在Ar气氛中快速退火。通过X射线衍射、X射线电子能谱、原子力显微镜和吸收谱研究了退火温度对薄膜结构、组分、形貌和禁带宽度的影响。结果表明,所制备样品为Cu2ZnSnS4多晶薄膜,具有较强的沿(112)晶面择优取向生长的特点,薄膜组分均为富S贫Cu,样品表面形貌比较均匀。退火温度为350,400,450和500℃的薄膜样品的禁带宽度分别是1.49,1.53,1.51和1.46 eV。  相似文献   

11.
An MWCNT-doped (multi-walled carbon nanotube) SnO_2 thin film NO_2 gas sensor, prepared by radio frequency reactive magnetron sputtering, showed a high sensitivity to ultra-low concentrations of NO_2 in the parts per billion range. X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy (SEM) characterizations indicated that the MWCNTs were affected by the morphology of the SnO_2 thin film and the particle size.The properties of the MWCNT-doped SnO_2 sensor, such as sensitivity, selectivity, and response-recovery time, were investigated. Experimental results revealed that the MWCNT-doped SnO_2 thin film sensor response to NO_2 gas depended on the operating temperature, NO_2 gas concentration, thermal treatment conditions, film thickness, and so on.The mechanism of the gas-sensing property of the MWCNT-doped SnO_2 thin film sensor was investigated and showed that the improved gas-sensing performance should be attributed to the effects between MWCNTs (p-type) and SnO_2 (n-type) semiconductors.  相似文献   

12.
林伟  黄世震  陈文哲 《半导体学报》2010,31(2):024006-6
采用射频反应磁控溅射方法制备了氧化锡/多壁碳纳米管(SnO2/MWCNTs)薄膜材料,并在此基础上研制NO2气敏传感器。采用X射线衍射仪(XRD)、X光电子能谱仪(XPS)、扫描电子显微镜(SEM)来研究WO3/MWCNTs材料的表面形貌、表面化学状态、表面化学元素等材料特性,研究结果表明MWCNTs已经掺杂进SnO2材料,合成的SnO2/MWCNTs气敏传感器表现出对低浓度(甚至低于10ppb)的NO2气体有较高的灵敏度和较好的反应-恢复特性,并解释了该传感器的工作机理是基于pn结(P型MWCNTs和N型SnO2)作用的结果。  相似文献   

13.
非晶硅薄膜(a-Si)是目前重要的光敏材料,在很多领域得到广泛应用。直流磁控溅射具有工艺简单.沉积温度低等优点,是制备薄膜的一种重要技术。采用直流磁控溅射工艺在玻璃基板上沉积薄膜,并对样品进行了退火处理。研究了沉积速率与溅射功率的关系。结果表明薄膜的沉积速率与溅射功率近似有线性关系。利用X射线衍射(XRD)对薄膜进行了分析鉴定,结果表明溅射的薄膜是非晶硅薄膜。利用扫描电子显微镜(SEM)对非晶硅薄膜的表面形貌进行了观察和分析,与X射线衍射测试的结果一致。所以.利用直流磁控溅射工艺能在常温下能快速制备出良好的非晶硅薄膜。  相似文献   

14.
柳伟  程树英 《半导体学报》2011,32(1):013002-4
用直流磁控溅射法将ITO薄膜制备在玻璃基片上以作为太阳电池的透明电极。通过改变溅射功率、基片温度和工作气压来研究它们对所沉积的ITO薄膜的透过率和电导率的影响。实验结果表明:当溅射功率从30W增加到90W时,薄膜的透过率和电阻率都将减小;当基片温度从25℃ 增加到 150℃时,透过率稍微有点增大但电阻率减小;当工作气压从0.4Pa 增大到2.0Pa时,透过率减小,但电阻率增大。因此,在溅射功率为30W、基片温度为150℃、工作气压为0.4Pa 时,ITO薄膜有比较好的光电性能,其电阻率小于10-4 Ω•cm ,在可见光波段的透过率大于80%,适合于作为太阳电池的透明电极。  相似文献   

15.
As anti-reflecting thin films and transparent electrodes of solar cells,indium tin oxide(ITO) thin films were prepared on glass substrates by DC magnetron sputtering process.The main sputtering conditions were sputtering power,substrate temperature and work pressure.The influence of the above sputtering conditions on the transmittance and conductivity of the deposited ITO films was investigated.The experimental results show that, the transmittance and the resistivity decrease as the sputtering power increases from 30 to 90 W.When the substrate temperature increases from 25 to 150℃,the transmittance increases slightly whereas the resistivity decreases.As the work pressure increases from 0.4 to 2.0 Pa,the transmittance decreases and the resistivity increases.When the sputtering power,substrate temperature and work pressure are 30 W,150℃,0.4 Pa respectively,the ITO thin films exhibit good electrical and optical properties,with resistivity below 10-4Ω·cm and the transmittance in the visible wave band beyond 80%.Therefore,the ITO thin films are suitable as transparent electrodes of solar cells.  相似文献   

16.
The influences of O2 gas addition in argon plasma on reactive RF magnetron sputtering deposition of vanadium-doped ZnO (VZO) films were examined. ZnO or VZO films with vanadium concentration of 2 at% were deposited on a quartz substrate. Vanadium doping caused oxygen deficiency in ZnO and formed a large number of zinc interstitials (Zni), oxygen vacancies (VO), and zinc vacancies (VZn). Carrier density of VZO decreased from 9×1020 to 9×1018 cm−3 between O2 partial pressure ratio (αO2) of 0.6% and 1.0% in spite of the increase in valence number of vanadium. This result suggests that Zni is the dominant donor in VZO since Zni is a shallow-level defect. Average optical transmittance (Tv) at wavelength between 450 and 800 nm of VZO was 61% while that of ZnO was 82% without oxygen addition. Although the optical transmittance of VZO was largely deteriorated by optical absorption of VO, Tv of VZO improved by oxygen addition and reached 85% at αO2 of 1.0% via suppression of VO formation.  相似文献   

17.
The effects of the vanadium (V) doping on the initial growth of ZnO films on a c-face sapphire substrate were investigated. The V-doped ZnO (VZO) films were grown at 200 °C by RF magnetron sputtering with various V concentration ranges. The unit cell volume of the VZO films became larger than that of the ZnO films, but the grain size of the VZO films shrank with a smooth surface. It was also found that the V doping enhanced c-axis alignment at the initial growth in the range of about 10–40 nm thick. Furthermore, it can be considered that V atoms were located at the interstitial sites in the state of V3+ from an analysis of the chemical binding states. Therefore, considering the effect of the V doping on the improvement in rotational symmetry of in-plane orientation, epitaxial alignment to the sapphire substrate was enhanced by the interstitial V incorporation.  相似文献   

18.
采用射频磁控溅射法,在石英衬底上制备了Zn1-xMgxO(x=0.00~0.16)薄膜。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、紫外-可见分光光度计和光致发光(PL)光谱等分析了薄膜的结构、形貌和光学特性。结果表明:当x≤0.10时薄膜保持六角纤锌矿结构,而x=0.16时已出现MgO立方相;所有薄膜晶粒大小均匀,在100~150 nm之间;透光率在80%以上;薄膜带隙Eg与Mg含量呈线性关系;薄膜PL谱由较弱的紫外发光峰和较强的可见发光带组成,随Mg含量的增加紫外发光峰蓝移。  相似文献   

19.
利用射频磁控溅射法在室温下制备出了掺锆氧化锌(ZnO∶Zr)透明导电薄膜。研究了溅射压强对ZnO∶Zr薄膜表面形貌、结构、光学和电学性能的影响。结果表明:ZnO∶Zr薄膜为六角纤锌矿结构的多晶薄膜,且具有c轴择优取向,溅射压强对薄膜电阻率有显著影响,压强为1.5Pa时,电阻率具有最小值1.77×10–3Ω·cm。所制备的ZnO∶Zr薄膜具有良好的附着性能,在可见光区平均透过率超过93%。  相似文献   

20.
氧氩流量比对RF溅射ZnO:Mg薄膜结构及光学性能的影响   总被引:3,自引:3,他引:0  
利用射频(RF)磁控溅射技术,采用单质Zn靶和 MgO陶瓷靶共溅射,在O2和Ar气的混合气氛下制备了Mg掺杂ZnO(ZnO:Mg)薄膜,并通过改变O2和Ar的流量比O 2/Ar,研究了 对ZnO:Mg薄膜的物相结构、表面形貌及光学性能的影响。结果表明,室 温下O2/Ar在1∶1~3∶1 范围内制备的薄膜均为单相的ZnO(002)薄膜,薄膜具有三维(3D)的结核生长模式;沉积的 ZnO:Mg薄膜在 N2氛下200℃退火处理后,O2/Ar为3∶1制备的薄膜在380~1200nm光谱范围内具有较高的透过率,可见光区平 均透过率约为85%、最大透过率达90%;薄膜的光学带隙 Eg为3.51eV,Mg掺杂对ZnO薄膜的光学带隙具有 较为明显的调制作用;采用极值包络线法计算表明,薄膜在589.3nm 处的折射率为1.963,膜厚约285nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号