首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Abstract

In the present investigation, effect of thermal ageing on low cycle fatigue (LCF) behaviour of Reduced Activation Ferritic Martensitic steel has been assessed by finite element analysis. The steel was thermally aged at 873 K for 3000 hour. Low cycle fatigue tests were carried out on both the as-received and thermally aged material at strain rate of 3×10?3 s?1 at 823 K, over strain amplitudes in the range of ± 0.25 to ± 0.8%. Continuous cyclic softening till final failure, except for initial few cycles especially at relatively lower strain amplitudes, was observed in both the material conditions. Thermal ageing resulted in marginally higher cyclic stress response accompanied by lower fatigue life. The differences in fatigue responses have been attributed to the coarsening of precipitates on thermal ageing. Finite element analysis has been carried out considering combined isotropic and kinematic hardening as material model to estimate the effect of thermal ageing on the response of material under LCF loading. Thermal ageing was found to decrease both the isotropic and kinematic hardening with appreciable effect on isotropic hardening. The predicted cyclic stress response and hysteresis loops were found to be in good agreement with the experimental data. The LCF life of the steel has been estimated based on the hysteresis energy approach.  相似文献   

2.
贾琦  蔡力勋  包陈 《工程力学》2014,31(1):218-223
对N18锆合金和SAPH440板材采用薄片漏斗试样进行了室温下的等幅低周疲劳试验,基于局部应力、应变相等的疲劳损伤等效原理,建立了用于估算N18和SAPH440材料疲劳寿命的Manson-Coffin模型和循环应力-应变方程。对于符合Masing律的材料,提出了一种获得循环本构关系的新方法,用转子材料B65A-S在300℃高温下的低周疲劳试验进行了验证。通过基于标定循环本构关系的有限元分析,建立了两种材料薄片漏斗试样平均应力到漏斗根部轴向应力、测试应变到漏斗根部轴向应变的转换模型。完成了SAPH440材料等直圆棒试样的低周疲劳试验,证明了采用薄片漏斗试样的低周疲劳测试新方法具有较高的精度。  相似文献   

3.
Experimental data have been generated and finite element models developed to examine the low cycle fatigue (LCF) life of a 9Cr (FB2) steel. A novel approach, employing a local ductile damage initiation and failure model, using the hysteresis total stress–strain energy concept combined with element removal, has been employed to predict the failure in the experimental tests. The 9Cr steel was found to exhibit both cyclic softening and nonlinear kinematic hardening behaviour. The finite element analysis of the material's cyclic loading was based on a nonlinear kinematic hardening criterion using the Chaboche constitutive equations. The models’ parameters were calibrated using the experimental test data available. The cyclic softening model in conjunction with the progressive damage evolution model successfully predicted the deformation behaviour and failure times of the experimental tests for the 9Cr steels performed.  相似文献   

4.
Accuracy in the estimation of low cycle fatigue life of modified 9Cr-1Mo steel notched specimen by different analytical methods such as linear rule, Neuber’s rule, strain energy density method and numerical method such as finite element analysis have been studied in this investigation. The fatigue tests on notched specimens having notch radius of 1.25 mm, 2.5 mm and 5.0 mm were carried out at 823 K with net stress amplitudes of 250 MPa, 300 MPa and 350 MPa. The fatigue tests on smooth specimens were carried out with strain amplitudes ranging from ±0.3% to ±0.8% with a strain rate of 3 × 10?3 s?1 at 823 K to evaluate the fatigue life of notched specimen through strain-life approach. In order to predict the cyclic stress response of the material, Chaboche non-linear hardening model was employed considering two back stress components. Predicted hysteresis loops for smooth specimen were well in agreement with experimental results. Estimated fatigue lives of notched specimens by analytical methods and finite element analysis were within a factor ±16 and ±2.5 of the experimental lives respectively.  相似文献   

5.
A combined experimental and finite element study of fatigue crack closure in modified 1070 steel has been conducted. In this paper, the material property evaluations required for this study are presented. The monotonic and cyclic stress-strain properties, cyclic stress response, cyclic strain resistance, low cycle fatigue life and fracture behavior are examined. The low cycle fatigue tests were conducted using tension-compression cycling, under total strain amplitude control, over a wide range of strain levels. The material was found to possess medium strength and high ductility; while displaying a strain level dependent combination of cyclic strain softening and hardening behavior. The observed softening behavior is attributed to the rearrangement of dislocations produced by processing, formation of slip bands on the specimen surface and the formation of microcracks. The observed hardening behavior is ascribed to contributions from synergistic influences of dislocation multiplication, dislocation-dislocation interactions and dislocation-microstructural feature interactions. The material followed the strain-life relationships attributed to Basquin and Coffin-Manson. The fracture surfaces of the fatigue specimens showed distinct regions of crack initiation, microscopic-macroscopic crack growth and sudden fracture. The low-cycle fatigue characteristics and fracture behavior are discussed in the light of competing and mutually interactive influences of cyclic strain amplitude, concomitant response stress, intrinsic microstructural effects and dislocation-microstructure interactions during cyclic straining.  相似文献   

6.
尹涛  蔡力勋  陈辉  姚迪 《工程力学》2018,35(11):206-215
关键工程结构、小尺寸零部件和焊接区的疲劳寿命评估中往往无法采用传统大试样进行疲劳试验,因此本文提出了一种采用毫米级别薄片试样获取材料循环本构关系和低周疲劳寿命的新方法。在Care原位试验机上完成毫米级别薄片漏斗试样的加载工装和低周疲劳试验的基础上,通过变幅对称循环试验和等辐循环试验分别实现了材料循环本构关系和低周疲劳性能的获取。该文提出了一种对不同幂律材料和不同几何尺寸构型均具有良好普适性的材料循环本构关系预测模型,并通过有限元实现了模型准确性的正反向预测验证。将循环本构关系用于有限元计算中,给出了薄片漏斗试样漏斗两侧名义应力、名义应变和漏斗根部真实应力、真实应变的转换方程,进而预测材料的低周疲劳寿命。该文完成了TA17合金等直圆棒试样和1.2 mm厚度薄片漏斗试样的对称变幅循环试验和多级等辐循环试验。由模型预测获得的TA17合金循环本构关系与等直圆棒试样的试验结果比较表明:两种曲线的弹性段和0.009 mm/mm~0.011 mm/mm应变段吻合良好,在弹塑性过渡段(0.004 mm/mm~0.009 mm/mm)模型预测结果最大相对误差小于9%。根据两组应力和应变转换方程获得的漏斗试样材料代表性体积单元疲劳寿命和Manson-Coffin寿命预测模型与等直圆棒试样试验结果均吻合良好。  相似文献   

7.
A methodology for fatigue analysis of damaged steel pipelines under cyclic internal pressure is proposed. This methodology employs stress concentration factors, which are commonly used to modify standard S–N curves of metallic structures under high cycle fatigue loadings. Experiments are accomplished to evaluate the strain behavior of small-scale steel pipes during denting and cyclic internal pressure. A nonlinear finite element model is developed to obtain stress concentration factors induced by plain dents on steel pipes under internal pressure. Afterwards, analytical expressions are developed to estimate stress concentration factors as function of the damaged pipe geometric parameters. Finally, fatigue tests are conducted to evaluate the finite life behavior of small-scale damaged pipes under cyclic internal pressure and to validate the proposed methodology of fatigue analysis.  相似文献   

8.
This study deals with simulation for cyclic stress/strain evolutions and redistributions, and evaluation of fatigue parameters suitable for estimating fatigue lives under multiaxial loadings. The local cyclic elastic–plastic stress–strain responses were analyzed using the incremental plasticity procedures of ABAQUS finite element code for both smooth and notched specimens made of three materials: a medium carbon steel in the normalized condition, an alloy steel quenched and tempered and a stainless steel, respectively. Emphasis is on the studying of ‘intelligent’ material behaviors to resist fracture, such as stress redistribution and relaxation through plastic deformations, etc. For experimental verifications, a series of tests of biaxial low cycle fatigue composed of tension/compression with static and cyclic torsion were carried out on a biaxial servo-hydraulic testing machine (Instron 8800). Different multiaxial loading paths were used to verify their effects on the additional cyclic hardening. The comparisons between numerical simulations and experimental observations show that the FEM simulations allow better understanding on the evolutions of the local cyclic stress–strain and it is shown that strong interactions exist between the most stressed material element and its neighboring material elements in the plastic deformations and stress redistributions. Based on the local cyclic elastic–plastic stress–strain responses, the energy-based multiaxial fatigue damage parameters are applied to correlating the experimentally obtained lives. Improved correlations between the predicted and the experimental results are shown. It is concluded that the improvement of fatigue life prediction depends not only on the fatigue damage models, but also on the accurate evaluations of the cyclic elasto-plastic stress/strain responses.  相似文献   

9.
Abstract: The fatigue damage accumulation behaviour of the P355NL1 steel is characterised using block loading fatigue tests. First, the constant amplitude low‐cycle fatigue behaviour of the P355NL1 steel is evaluated through strain‐controlled fatigue tests of smooth specimens. Both fatigue and cyclic elastoplastic behaviours are analysed. Then, block loading is applied to identify the key features of the fatigue damage accumulation phenomena for the P355NL1 steel. The block loading is composed of two distinct low‐cycle constant amplitude strain‐controlled blocks. The first block is applied for a predefined number of loading cycles, being followed by a second block which is applied until failure. The block loading illustrates that fatigue damage evolves nonlinearly with the number of load cycles as a function of the strain amplitude. These observations suggest a nonlinear damage accumulation rule with load sequence effects. The linear Palmgren–Miner's rule used extensively in design is not verified for the P355NL1 steel. Finally, using the generated experimental data, the cyclic elastoplastic behaviour of the P355NL1 steel is modelled using a continuum plasticity model with nonlinear kinematic hardening, available in the commercial finite element code ansys ®.  相似文献   

10.
Abstract— In low cycle fatigue situations, the plastic behaviour of the material at the root of stress concentrators is of prime importance in determining the cyclic life. However, simple procedures such as Neuber's rule do not adequately describe the development of plastic behaviour at a notch root, while the expense of a finite element analysis is not justified in many instances. This paper describes a simple, approximate numerical method of calculating plastic notch stresses and strains that would be of use in such situations. The usefulness of the technique is demonstrated by comparing low cycle fatigue lives predicted from notch plastic strains with those determined by fatigue testing of smooth specimens subjected to similar plastic strain ranges.  相似文献   

11.
The numerical analysis of low cycle fatigue of HTS‐A steel welded joints under combined bending and local compressive loads are implemented using the damage mechanics approach. First, a finite element numerical simulation of the welding process is employed to extract the welding residual stresses, which are then imported as initial stresses in the subsequent fatigue analysis. Second, a multiaxial fatigue damage model including damage coupled elasto‐plastic constitutive equations and plastic damage evolution formulation is applied to evaluate the mechanical degradation of the material under biaxial fatigue loads. Further, the fatigue lives of the HTS‐A steel welded joints are computed and compared with the experimental results from literature. A series of predicted load‐life curves clearly illustrates the variation of fatigue lives along with the combined loadings. Finally, the effects of local compression on accumulated plastic strain and fatigue damage are studied in detail. It is revealed that the local compression induces a damage competition between two critical zones.  相似文献   

12.
In the present study, the results of the monotonic tension tests and low cycle fatigue tests performed on aluminium alloy EN AW‐2024‐T3 under various operating temperatures are presented in order to assess the fatigue behaviour of the aluminium alloy under evaluated temperatures. Monotonic tests were performed to determine the influence of temperature on mechanical properties of the material. The aim of cyclic tests was to acquire the parameters required for Manson–Coffin equation in order to plot strain–fatigue life curves. Moreover, stress–strain behaviour of the alloy and the cyclic hardening behaviour were evaluated using Ramberg–Osgood equation. Finally, PSWT‐damage parameters for each temperature have been calculated for further investigation of the effects of the temperature on fatigue life using acquired data while taking the account of mean stress effect into calculations. Variations in the experimental data due to various test temperatures are presented for both monotonic and cyclic tests.  相似文献   

13.
In this article, numerical simulations of cyclic behaviors in light alloys are conducted under isothermal and thermo-mechanical fatigue loadings. For this purpose, an aluminum alloy (A356) which is widely used in cylinder heads and a magnesium alloy (AZ91) which can be applicable in cylinder heads are considered to study their stress–strain hysteresis loops. Two plasticity approaches including the Chaboche’s hardening model and the Nagode’s spring-slider model are applied to simulate cyclic behaviors. To validate obtained results, strain-controlled fatigue tests are performed under low cycle and thermo-mechanical fatigue loadings. Numerical results demonstrate a good agreement with experimental data at the mid-life cycle of fatigue tests in light alloys. Calibrated material constants based on low cycle fatigue tests at various temperatures are applied to models to estimate the thermo-mechanical behavior of light alloys. The reason is to reduce costs and the testing time by performing isothermal fatigue experiments at higher strain rates.  相似文献   

14.
A 1Cr-Mo-V turbine rotor steel forging, heat treated to obtain a bainite-20% ferrite microstructure, has been investigated for low cycle fatigue behaviour at room temperature and 535°C. In addition to establishing life expectancy curves, cyclic stress response and cyclic stress/strain curves were derived and the influence of time-dependent effects on high temperature low cycle fatigue life was also determined by introducing varying hold times at the peak tensile strain level of the fatigue cycle. The life expectancy curve obtained is comparable to that reported for the bainitic structure in this steel. Introduction of a dwell period of 5 min is found to reduce the low cycle fatigue life by a factor of 1.6.  相似文献   

15.
该文以我国HRB400钢筋为研究对象,首先对其进行了单调拉伸试验和恒应变幅值循环加载试验,得出HRB400钢筋的基本力学性能参数、应变幅值-疲劳周期数和应变幅值-强度退化系数值关系式及疲劳参数的取值;然后,根据试验所得到的材料性能参数,在OpenSees软件中,选用ReinforcingSteel钢筋本构模型对本次试验进行了模拟,验证了试验数据处理结果的准确性和实用性;最后评价了HRB400钢筋的低周疲劳特性,为建立基于材料层次的精细化钢筋混凝土结构数值纤维模型提供了重要的试验参考依据。  相似文献   

16.
The aim of this work is to study pure rolling contact fatigue in 32CrMoV13 quenching and tempering steel. The study involves both experimental and numerical work. The influence of the roughness and the residual stresses on the mechanisms and zones of cracking were studied. The results show a rapid reduction in roughness during the first minute of test but even so there will be specimen deterioration. The residual stress profile after rolling contact tests have high compression values in the surface and at a depth of approximately 240 μm, which is related with the Hertzian maximal shear stress. The numerical simulation of the Hertzian loading was used both to determine the elastic shakedown of the material and to apply a high‐cycle multiaxial fatigue criterion. The three‐dimensional finite element analysis used in the numerical calculation includes elastic‐linear kinematic hardening plastic material and allows the introduction of an initial residual stress state. Taking into account the elastoplastic load induced by the Hertz pressure, low‐cycle fatigue tests were used to characterize the mechanical properties of the material. In order to validate the numerical simulation, the results of the calculation after elastic shakedown were compared with the values measured by X‐ray diffraction after rolling contact tests. The results showed a reasonable agreement between calculated and measured stresses. The Dang Van high‐cycle multiaxial fatigue criterion showed a good relationship with the experimental findings.  相似文献   

17.
Abstract

The assessment of high temperature components under cyclic deformation conditions increasingly relies on determinations of the stress–strain state at the critical location using non-linear finite element analysis. An important consideration in such finite element simulations is the used constitutive model. The Chaboche model has been widely accepted as an advanced model for such applications. This study evaluates the variation of Chaboche model parameters with temperature for low cycle fatigue conditions and introduces an approach to systematically calibrate the model for a range of temperatures, rather than for single temperatures. Furthermore, mathematical representations have been proposed to consider the effect of superimposed creep deformation on the Chaboche model parameters. Successful application of the proposed approach/formulation for representing the behaviour of a 10%Cr steel under low cycle fatigue and cyclic/hold deformation conditions for the temperature range of 20–625°C is presented.  相似文献   

18.
Behaviour of a metallic fibre composite material and its components in LCF‐test The mechanical behaviour of unidirectional metallic fiber composite materials is investigated in the low cycle fatigue tests. The material consists of a copper matrix reinforced by continuous unidirectional fibers of austenitic steel with two different volume fractions. A comparative investigation carried out on the component materials. In addiction to the result of the strain controlled tension‐compression‐tests, the fatigue life is estimated using the Manson‐Coffin relation. The fracture characteristics are studies metallographically.  相似文献   

19.
A finite element program calculates the cyclic behaviour of the individual component phases of a multiphase material using a master curve observed in uniaxial cyclic stress tests. The fatigue behaviour of the two-phase alloys was characterized by visualizing the evolution of the phase stress (denoted by an average effective stress and an hydrostatic stress) during cyclic loading. The evolution procedure shows a unique fatigue behaviour of the in situ component phases, which differs from that observed in uniaxial or multiaxial fatigue tests of the single phase material. The fatigue damage on a microstructural scale was identified by the distributions of the plastic strain accumulated during cyclic loading and the stress triaxility in the component phases.  相似文献   

20.
通过SiCp/A356颗粒增强复合材料切口试样在20℃-300℃循环下的热疲劳试验,获得热疲劳裂纹形成寿命与试样切口半径及厚度等几何尺寸的关系。采用热弹塑性有限元法模拟热疲劳试验中试样切口根部的应力.应变响应,进而揭示出残余应力形成机制。结合热疲劳试验的裂纹形成寿命与有限元模拟的应力.应变响应,建立起考虑平均应力影响的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号