首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetrapod-shaped zinc oxide whisker-film emitters were fabricated on indium tin oxide glass substrates using a screen-printing method. The influence of annealing temperature on field emission of tetrapod-whisker ZnO-based emitters was investigated. X-ray diffraction and scanning electronic microscopy were applied to characterize the structure and the surface morphology of the deposited films. It was found that ZnO-based emitters annealed at 250 °C have the best field emission properties with the lowest turn-on field of 2.6 V/μm at a current density of 1 μA/cm2, the lowest threshold field of 5.2 V/μm at a current density of 1 mA/cm2 and high field emission enhancement factor of 4129. Moreover, films with homogeneous, fine and dense light spots with low emission current fluctuation of 1.7% were obtained from samples annealed at 250 °C.  相似文献   

2.
In the present study, we report a cost-effective quantum dot solar cells based on a combination of electrospinning and successive-ionic-layer-adsorption and reaction (SILAR) methods. CdSe nanocrystals are deposited on electrospun SnO2 nanofibers by SILAR method using CdCl2 as the cadmium source and Na2Se as selenium source. The as-prepared materials are characterized by spectroscopy and microscopy. CdSe deposited SnO2 electrodes are also characterized by spectroscopy and microscopy. Cells are fabricated with platinum (Pt)-sputtered FTO glasses used as the counter electrodes and polysulfide solution used as the electrolyte. The efficiency of the cells is studied for different number of SILAR cycles. Current density–voltage (JV) measurements on a cell having CdSe deposition of 7 SILAR cycles and SnO2 coating area 0.25 cm2 showed an overall power conversion efficiency of 0.29 % with a photocurrent density (JSC) of 5.32 mA cm−2 and open circuit voltage (VOC) of 0.23 V under standard 1 Sun illumination of 100 mWcm−2 (AM 1.5 G conditions). This is improved by carefully coating SnO2 film without losing the structures. Also ZnS passivation layer is coated to obtain an improved efficiency of 0.48% with JSC of 4.68 mAcm−2, and VOC of 0.43 V.  相似文献   

3.
In the paper, SnOx thin films were deposited by reactive magnetron sputtering from a tin target in O2 containing working gas. The evolution from Sn-containing SnO to tetravalent SnO2 films was investigated. The films could be classified into three groups according to their optical band gaps, which are Eg<2.5 eV, Eg=3.0–3.3 eV and Eg>3.7 eV. The electric measurements show that high conductivity can be obtained much easier in SnO2 than in SnO films. A high electron mobility of 15.7 cm2 V−1 s−1, a carrier concentration of 1.43×1020 cm−3 and a resistivity of 2.8×103 Ω cm have been achieved in amorphous SnO2 films. Films with the optical band gap of 3.0–3.3 eV remain amorphous though the substrate temperature is as high as 300 °C, which implies that °btaining high mobility in p-type SnO is more challenging in contrast to n-type SnO2 films.  相似文献   

4.
Cadmium stannate (Cd2SnO4) thin films were coated on Corning 1737 glass substrates at 540 °C by spray pyrolysis technique, from the aqueous solution of cadmium acetate and tin (II) chloride precursors. Fluorine doped Cd2SnO4 (F: Cd2SnO4) thin films were prepared by adding ammonium fluoride in the range of 0–5 wt% of the total weight of cadmium acetate and tin (II) chloride in the spray solution. Thickness of the prepared films is about 300 nm. X-ray diffraction analysis of the Cd2SnO4 and 3 wt% F: Cd2SnO4 films shows the signature for the growth along (222) direction. Scanning electron micrographs showed that fluorine doping effectively modifies the surface morphology of Cd2SnO4 films. Average optical transmittance in the visible region (500–850 nm) for Cd2SnO4 is ~79% and it is increased to ~83% for 1 wt% doping concentration of the NH4F in the solution. Fluorescence spectra of F: Cd2SnO4 (1 wt% and 3 wt%) exhibit peak at 601 nm. F: Cd2SnO4 film (1 wt%) shows mobility of ~42 cm2/V s, carrier concentration of ~9.5×1019 cm?3 and resistivity of ~1.5×10?3 Ω cm.  相似文献   

5.
4H–SiC BJTs with a common emitter current gain of 110 have been demonstrated. The high current gain was attributed to a thin base of 0.25 μm which reduces the carrier recombination in the base region. The device open base breakdown voltage (BVCEO) of 270 V was much less than the open emitter breakdown voltage (BVCBO) of 1560 V due to the emitter leakage current multiplication from the high current gain by “transistor action” of BJTs. The device has shown minimal gain degradation after electrical stress at high current density of >200 A/cm2up to 25 h.  相似文献   

6.
《Organic Electronics》2007,8(4):305-310
High brightness and efficient white stacked organic light-emitting diodes have been fabricated by connecting individual blue and red emissive units with the anode–cathode layer (ACL) consisting of LiF (1 nm)/Ca (25 nm)/Ag (15 nm). Use 1,3-bis(carbazol-9-yl)benzene (mCP):bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III (FirPic) as the blue emitter and tris(8-hydroxy-quinolinato)aluminium (Alq3):4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) as the red emitter, white light emission with CIE coordinates of (0.32, 0.38) was obtained at a driving voltage of 26 V with a luminance of 40,000 cd/m2. By replacing the red fluorescent emitter with a phosphorescent one, the color coordinates were improved to (0.33, 0.31). The peak external quantum efficiency was enhanced from 5.3% (at 28.2 mA/cm2) to 10.5% (at 1.4 mA/cm2) as well.  相似文献   

7.
Tin dioxide (SnO2) powder was prepared by the co-precipitation method using SnCl2 solution as a precursor. The powder was then pelletized and sintered. Structural characterization of the samples with XRD confirmed that all the pellets were of SnO2 having polycrystalline nature with the crystallite size of the order of 90 nm. SEM-EDAX was used to confirm the morphology and composition of the samples. The measurements of electrical properties were carried out in the frequency range of 100 Hz to 100 kHz at various fixed temperatures from 40 °C to 160 °C. The a.c. conductivity and the dielectric constant were found to be dependent on both frequency and temperature. The frequency and temperature dependent conduction properties of SnO2 are found to be in accordance with correlated barrier hoping model. Infrared and visible spectroscopic studies show that a strong vibration band characteristic of the SnO2 stretching mode was present at around 620 cm?1 and the samples exhibited optical transmittance in the visible range.  相似文献   

8.
A novel blue emitter, In2Bt, featured with a rigid and coplanar distyryl-p-phenylene backbone flattened by two different bridging atoms (i.e. carbon and sulfur) exhibits high thermal and morphological stability (Tg  192 °C) and ambipolar charge carrier mobilities in the range of 10?4  10?5 cm2 V?1 s?1. OLED device: ITO/PEDOT:PSS (300 Å)/α-NPD (200 Å)/TCTA (100 Å)/In2Bt (200 Å)/TPBI (500 Å)/LiF (5 Å)/Al (1500 Å) utilized In2Bt as an emitter gave a maximum brightness as high as 8000 cd m?2 (12 V) and saturated-blue emission with CIE chromaticity coordinates of (0.16, 0.08), which is very close to the National Television Standards Committee (NTSC) standard blue gives an enlarged palette of colors for color displays.  相似文献   

9.
The effect of annealing temperature on photoluminescence (PL) of ZnO–SiO2 nanocomposite was investigated. The ZnO–SiO2 nanocomposite was annealed at different temperatures from 600 °C to 1000 °C with a step of 100 °C. High Resolution Transmission Electron Microscope (HR-TEM) pictures showed ZnO nanoparticles of 5 nm are capped with amorphous SiO2 matrix. Field Emission Scanning Electron Microscope (FE-SEM) pictures showed that samples exhibit spherical morphology up to 800 °C and dumbbell morphology above 800 °C. The absorption spectrum of ZnO–SiO2 nanocomposite suffers a blue-shift from 369 nm to 365 nm with increase of temperature from 800 °C to 1000 °C. The PL spectrum of ZnO–SiO2 nanocomposite exhibited an UV emission positioned at 396 nm. The UV emission intensity increased as the temperature increased from 600 °C to 700 °C and then decreased for samples annealed at and above 800°C. The XRD results showed that formation of willemite phase starts at 800 °C and pure willemite phase formed at 1000 °C. The decrease of the intensity of 396 nm emission peak at 900 °C and 1000 °C is due to the collapse of the ZnO hexagonal structure. This is due to the dominant diffusion of Zn into SiO2 at these temperatures. At 1000 °C, an emission peak at 388 nm is observed in addition to UV emission of ZnO at 396 nm and is believed to be originated from the willemite.  相似文献   

10.
Flexible and wearable energy storage devices are strongly demanded to power smart textiles. Herein, reduced graphene oxide (RGO) and polypyrrole (PPy) were deposited on cotton fabric via thermal reduction of GO and chemical polymerization of pyrrole to prepare textile-based electrodes for supercapacitor application. The obtained PPy–RGO-fabric retained good flexibility of textile and was highly conductive, with the conductivity of 1.2 S cm−1. The PPy–RGO-fabric supercapacitor showed a specific capacitance of 336 F g−1 and an energy density of 21.1 Wh kg−1 at a current density of 0.6 mA cm−2. The RGO sheets served as conductor and framework under the PPy layer, which could facilitate electron transfer between RGO and PPy and restrict the swelling and shrinking of PPy, thus resulting in improved electrochemical properties respect to the PPy-fabric device.  相似文献   

11.
Multihydroxylation of a small-molecule aryl amine leads to a contrasting solubility in polar and weakly polar solvents. The resulting compound shows an intrinsic amorphous morphology with a high Tg of 190 °C and is capable of affording uniform smooth and transparent films, spin-cast from 2-propanol. The fitting of the space-charge-limited current characteristics reveals a hole mobility of ~4.6 × 10?6 cm2 V?1 s?1 at low-voltages. Incorporating this new compound as a hole-transport layer into conventional bottom-anode organic light-emitting diodes that consisted of a solution-processed emitter provides promising performance.  相似文献   

12.
We report on the reliability of InGaAs/InP DHBT technology which has applications in very high-speed ICs (over 100 Gbits/s). This work presents the results of accelerated aging tests under thermal and electrical stresses performed on HBT up to 2000 h. Stress conditions consist in applying collector–emitter bias VCE from 1.3 to 2.7 V and collector current densities JC of 400 and 610 kA/cm2. The corresponding junction temperatures TJ extends from 83 to 137 °C. The base current ideality factor ηB increase and the current gain β decrease have revealed a degradation of the base–emitter junction. The normalized current gain βnorm drop has occurred earlier for higher VCE and/or higher TJ. A 20% decrease of βnorm chosen as the failure criterion leads to an activation energy of 1.1 eV.  相似文献   

13.
The study explored titanium dioxide (TiO2) on aluminum gallium arsenide (AlGaAs) prepared by liquid phase deposition (LPD) at 40 °C. The leakage current density was about 8.4 × 10?6 A/cm2 at 1 MV/cm. The interface trap density (Dit) and the flat-band voltage shift (ΔVFB) were 2.3 × 1012 cm?2 eV?1 and 1.2 V, respectively. After rapid thermal annealing (RTA) in the ambient N2 at 350 °C for 1 min, the leakage current density, Dit, and ΔVFB were improved to 2.4 × 10?6 A/cm2 at 1 MV/cm, 7.3 × 1011 cm?2 eV?1, and 1.0 V, respectively. Finally, the study demonstrates the application to the AlGaAs/InGaAs metal–oxide–semiconductor pseudomorphic high-electron-mobility transistor (MOS-PHEMT). The results indicate the potential of the proposed device with a LPD-TiO2 gate oxide for power application.  相似文献   

14.
Blue and white small-molecule organic light-emitting diodes are fabricated by multi-layer blade coating on hot plate at 80 °C with hot wind. Uniform multi-layer structures are made without dissolution due to rapid drying. Only small molecules originally developed for vacuum deposition are used. For hole transport layer of, 4′,4″-tris(carbazol-9-yl)triphenylamine (TCTA), electron transport layer of 2,2′,2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TBPI), emissive layer host of, 6-bis(3-(9H-carbazol-9-yl)phenyl)pyridine (26DCzPPy), triplet emitters of bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium(III) (FIrpic), and cathode of LiF/Al, the peak current efficiency for blue emission is 25.1 cd/A (10.8% and 9.3 lm/W). Orange emitter iridium(III)bis (4-(4-t-butylphenyl) thieno[3,2-c]pyridinato-N,C2′)acetylacetonate (PO-01-TB) is added to obtain white emission with CIE coordinate of (0.39, 0.46) [1]. The current efficiency is 34.2 cd/A (11.6% and 12 lm/W) at maximum, 32.4 cd/A at 1000 cd/m2, and 31 cd/A at 10,000 cd/m2.  相似文献   

15.
In the present study, we have developed a novel mixed co-diffusion (MCD) process by which to prepare a selective back surface field (BSF) of n-type emitter wrap through (EWT) solar cells, which combines a plasma enhanced chemical vapor deposition (PECVD) phosphorus-doped n-type microcrystalline silicon as the dopant source, with a low temperature thermal oxidation (LTO) process. Through comparison between our MCD process and a standard co-diffusion (SCD) process, a BSF with a shallow doping depth of 0.56 µm and high doping concentration of 1.9×1020 at/cm3 is easily obtained by the MCD process under the low temperature of 750 ℃. Therefore, the MCD process is shown to reduce the number of high temperature processes, which cannot produce dopant redistribution, and can accurately control the doping concentrations and depths of the BSF and emitter. In addition, the novel method also eliminates the boron-rich layer, which induces misfit dislocations and bulk lifetime degradation, without extra chemical treatment. Therefore, the MCD process' open circuit voltage, short circuit current density, conversion efficiency and fill factor of the solar cells are respectively increased by 7 mV, 6 mA/cm2, 2% and 2%. These results indicate that the MCD process is a novel and potential agent for the SCD process.  相似文献   

16.
Tin dioxide (SnO2) ultralong nanobelts were fabricated on silicon substrate by metal catalyzed Chemical Vapor Deposition (CVD) approach. An optical bandgap of 3.66 eV was calculated by optical absorbance data. Three Raman active modes peaks were observed at 474.4, 633 and 774.4 cm−1. Room temperature photoluminescence (PL) exhibited an orange emission at 600 nm. A vapor–liquid–solid (VLS) process based growth mechanism for the formation of SnO2 nanobelts was proposed and discussed briefly. Electrical transport characteristics of nanobelts were studied in dark and under ultraviolet (UV) laser. The fabricated device exhibited high photo-response properties under UV light, indicating their potential application as photo-switches and UV detectors.  相似文献   

17.
Tin oxide (SnO2) thin films were deposited on glass substrates by thermal evaporation at different substrate temperatures. Increasing substrate temperature (Ts) from 250 to 450 °C reduced resistivity of SnO2 thin films from 18×10−4 to 4×10−4 Ω ▒cm. Further increase of temperature up to 550 °C had no effect on the resistivity. For films prepared at 450 °C, high transparency (91.5%) over the visible wavelength region of spectrum was obtained. Refractive index and porosity of the layers were also calculated. A direct band gap at different substrate temperatures is in the range of 3.55−3.77 eV. X-ray diffraction (XRD) results suggested that all films were amorphous in structure at lower substrate temperatures, while crystalline SnO2 films were obtained at higher temperatures. Scanning electron microscopy images showed that the grain size and crystallinity of films depend on the substrate temperature. SnO2 films prepared at 550 °C have a very smooth surface with an RMS roughness of 0.38 nm.  相似文献   

18.
We report on the effect of different ethanol/water solvent ratios on the morphology of SnO2 nanocrystals prepared by the conventional hydrothermal method and their electrochemical properties. The nanocrystals were structurally and morphologically characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), surface area measurements, and transmission electron microscopy. The XRD patterns indicate that the sphere-like SnO2 microcrystals have a rutile-type tetragonal structure and FESEM images show that the microspheres have a diameter of 2–5 μm. We found that the ethanol/water volume ratio plays an important role in formation of the final product. Electrochemical tests revealed that the SnO2 microspheres had a high initial capacity of 1546 mAh g?1 at a current density of 100 mA g?1 and retained a reversible capacity of 439 mAh g?1 after 30 discharge cycles.  相似文献   

19.
MIS structures using HfO2 and HIZO layers, both deposited by room temperature RF magnetron sputtering are fabricated for TFTs application and characterized using capacitance-voltage. The relative dielectric constant obtained at 1 kHz was 11, the charge carrier concentration of the HIZO was in the range of (2–3) × 1018 cm 3 and the interface trap density at flat band was smaller than 2 × 1012 cm 2. The critical electric field of the HfO2 layer was higher than 5 × 105 V/cm, with a current density in the operating voltage range below 4 × 10 8 A/cm2. The hysteresis and bias stress behavior of RF-sputtered HfO2/HIZO MIS structures is presented. Fabricated HfO2/HIZO TFTs worked in the operation voltage range below 8 V.  相似文献   

20.
In this study, titanium dioxide (TiO2) films were grown on polycrystalline silicon by liquid phase deposition (LPD) with ammonium hexafluoro-titanate and boric acid as sources. The film structure is amorphous as examined by X-ray diffraction (XRD). A uniform composition of LPD-TiO2 was observed by SIMS examination. The leakage current density of an Al/LPD-TiO2/poly-Si/p-type Si metal–oxide–semiconductor (MOS) structure is 1.9 A/cm2 at the negative electric field of 0.7 MV/cm. The dielectric constant is 29.5 after O2 annealing at 450 °C. The leakage current densities can be improved effectively with a thermal oxidized SiO2 added at the interface of LPD-TiO2/poly-Si. The leakage current density can reach 3.1×10−4 A/cm2 at the negative electric field of 0.7 MV/cm and the dielectric constant is 9.8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号