首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermodynamic equilibria between CaO-Al2O3-SiO2-CaF2-MgO(-MnO) slag and Fe-1.5 mass pct Mn-0.5 mass pct Si-0.5 mass pct Cr melt was investigated at 1873 K (1600 °C) in order to understand the effect of slag composition on the concentration of Al2O3 in the inclusions in Si-Mn-killed steels. The composition of the inclusions were mainly equal to (mol pct MnO)/(mol pct SiO2) = 0.8(±0.06) with Al2O3 content that was increased from about 10 to 40 mol pct by increasing the basicity of slag (CaO/SiO2 ratio) from about 0.7 to 2.1. The concentration ratio of the inclusion components, \( {{X_{{{\text{Al}}_{2} {\text{O}}_{3} }} \cdot X_{\text{MnO}} } \mathord{\left/ {\vphantom {{X_{{{\text{Al}}_{2} {\text{O}}_{3} }} \cdot X_{\text{MnO}} } {X_{{{\text{SiO}}_{2} }} }}} \right. \kern-0pt} {X_{{{\text{SiO}}_{2} }} }} \) , and the activity ratio of the steel components, \( {{a_{\text{Al}}^{2} \cdot a_{\text{Mn}} \cdot a_{\text{O}}^{2} } \mathord{\left/ {\vphantom {{a_{\text{Al}}^{2} \cdot a_{\text{Mn}} \cdot a_{\text{O}}^{2} } {a_{\text{Si}} }}} \right. \kern-0pt} {a_{\text{Si}} }} \) , showed a good linear relationship on a logarithmic scale, indicating that the activity coefficient ratio of the inclusion components, \( {{\gamma_{{{\text{SiO}}_{2} }}^{i} } \mathord{\left/ {\vphantom {{\gamma_{{{\text{SiO}}_{2} }}^{i} } {\left( {\gamma_{{{\text{Al}}_{2} {\text{O}}_{3} }}^{i} \cdot \gamma_{\text{MnO}}^{i} } \right)}}} \right. \kern-0pt} {\left( {\gamma_{{{\text{Al}}_{2} {\text{O}}_{3} }}^{i} \cdot \gamma_{\text{MnO}}^{i} } \right)}} \) , was not significantly changed. From the slag-steel-inclusion multiphase equilibria, the concentration of Al2O3 in the inclusions was expressed as a linear function of the activity ratio of the slag components, \( {{a_{{{\text{Al}}_{2} {\text{O}}_{3} }}^{s} \cdot a_{\text{MnO}}^{s} } \mathord{\left/ {\vphantom {{a_{{{\text{Al}}_{2} {\text{O}}_{3} }}^{s} \cdot a_{\text{MnO}}^{s} } {a_{{{\text{SiO}}_{2} }}^{s} }}} \right. \kern-0pt} {a_{{{\text{SiO}}_{2} }}^{s} }} \) on a logarithmic scale. Consequently, a compositional window of the slag for obtaining inclusions with a low liquidus temperature in the Si-Mn-killed steel treated in an alumina ladle is recommended.  相似文献   

2.
3.
Data in the literature on the Magneli oxides of titanium have been critically evaluated and equations have been developed from these data for the standard-state Gibbs energy of formation of the following oxides: Ti4O7, Ti5O9, Ti6O11, Ti8O15, and Ti9O17. Examination of those data yielded the following:
Similar equations for Ti16O31 and Ti50O99 have been estimated from their respective data at 1304 K. The result of that analysis has lead to the following equations:
These equations, along with data in the literature, have been used to construct the Ti-O stability diagram.  相似文献   

4.
The diffusion coefficient of Sc in dilute Al-Sc alloys has been determined at 748 K, 823 K, and 898 K (475 °C, 550 °C, and 625 °C, respectively) using semi-infinite diffusion couples. Good agreement was found between the results of the present study and both the higher temperature, direct measurements and lower temperature, indirect measurements of these coefficients reported previously in the literature. The temperature-dependent diffusion coefficient equation derived from the data obtained in the present investigation was found to be \( D \left( {{\text{m}}^{2} /{\text{s}}} \right) = \left( {2.34 \pm 2.16} \right) \times 10^{ - 4} \left( {{\text{m}}^{2} /{\text{s}}} \right) { \exp }\left( {\frac{{ - \left( {167 \pm 6} \right) \left( {{\text{kJ}}/{\text{mol}}} \right)}}{RT}} \right). \) Combining these results with data from the literature and fitting all data simultaneously to an Arrhenius relationship yielded the expression \( D \left( {{\text{m}}^{2} /{\text{s}}} \right) = \left( {2.65 \pm 0.84} \right) \times 10^{ - 4} \left( {{\text{m}}^{2} /{\text{s}}} \right) { \exp }\left( {\frac{{ - \left( {168 \pm 2} \right) \left( {{\text{kJ}}/{\text{mol}}} \right)}}{RT}} \right). \) In each equation given above, R is 0.0083144 kJ/mol K, T is in Kelvin, and the uncertainties are ±1 standard error.  相似文献   

5.
The objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO2-CO-H2O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H2O or CO2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO2/CO = 40/7). Rate expressions that correlate CO2 and H2O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows:
$$ {\text{Rate}}\left( {\frac{\text{mol}}{{{\text{m}}^{2} {\text{s}}}}} \right) = 406 \exp \left( {\frac{{ - 50.2 \,{\text{kJ}}/{\text{mol}}}}{RT}} \right)\left( {p_{\text{Zn}} p_{{{\text{CO}}_{2} }} - p_{\text{CO}} /K_{{{\text{eq}},{\text{CO}}_{2} }} } \right)\,\frac{\text{mol}}{{{\text{m}}^{2} \times {\text{s}}}} $$
$$ {\text{Rate}}\left( {\frac{\text{mol}}{{{\text{m}}^{2} {\text{s}}}}} \right) = 32.9 \exp \left( {\frac{{ - 13.7\, {\text{kJ}}/{\text{mol}}}}{RT}} \right)\left( {p_{\text{Zn}} p_{{{\text{H}}_{2} {\text{O}}}} - p_{{{\text{H}}_{2} }} /K_{{{\text{eq}},{\text{H}}_{2} {\text{O}}}} } \right)\,\frac{\text{mol}}{{{\text{m}}^{2} \times {\text{s}}}} $$
It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO2 and H2O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the measured data. For the conditions used in this study, the rate equations for the oxidation of zinc by carbon dioxide and water vapor as well as the homogeneous nucleation model of metallic zinc were applicable for various temperatures, zinc partial pressures, CO2:CO ratios, and H2O partial pressures.
  相似文献   

6.
In this study, isothermal reaction behavior of loose NiO powder in a flowing undiluted CH4 atmosphere at the temperature range 1000 K to 1300 K (727 °C to 1027 °C) is investigated. Thermodynamic analyses at this temperature range revealed that single phase Ni forms at the input \( {{n_{{{\text{CH}}_{ 4} }}^{\text{o}} } \mathord{\left/ {\vphantom {{n_{{{\text{CH}}_{ 4} }}^{\text{o}} } {\left( {n_{{{\text{CH}}_{ 4} }}^{\text{o}} + n_{\text{NiO}}^{\text{o}} } \right)}}} \right. \kern-0pt} {\left( {n_{{{\text{CH}}_{ 4} }}^{\text{o}} + n_{\text{NiO}}^{\text{o}} } \right)}} \) mole fractions (\( X_{{{\text{CH}}_{ 4} }} \)) between ~0.2 and 0.5. It was also predicted that free C co-exists with Ni at \( X_{{{\text{CH}}_{ 4} }} \) values higher than ~0.5. The experiments were carried out as a function of temperature, time, and CH4 flow rate. Mass measurement, XRD and SEM-EDX were used to characterize the products at various stages of the reaction. At 1200 K and 1300 K (927 °C and 1027 °C), the reaction of NiO with undiluted CH4 essentially consisted of two successive distinct stages: NiO reduction and pyrolytic C deposition on pre-reduced Ni particles. At 1200 K (927 °C), 1100 K (827 °C), and 1000 K (727 °C), complete oxide reduction was observed within ~7.5, ~17.5, and ~45 minutes, respectively. It was suggested that NiO was essentially reduced to Ni by a CH4 decomposition product, H2. Possible reactions leading to NiO reduction were suggested. An attempt was made to describe the NiO reduction kinetics using nucleation-growth and geometrical contraction models. It was observed that the extent of NiO reduction and free C deposition increased with the square root of CH4 flow rate as predicted by a mass transport theory. A mixed controlling mechanism, partly chemical kinetics and partly external gaseous mass transfer, was responsible for the overall reaction rate. The present study demonstrated that the extent of the reduction can be determined quantitatively using the XRD patterns and also using a formula theoretically derived from the basic XRD data.  相似文献   

7.
The standard Gibbs energies of formation of Mo2B, ??MoB, Mo2B5, and MoB4 in the molybdenum-boron binary system were determined by measuring electromotive forces of galvanic cells using an Y2O3-stabilized ZrO2 solid oxide electrolyte. The results are as follows: $$ \begin{aligned} \Updelta_{\text{f}} {\text{G}}^\circ \left( {{\text{Mo}}_{2} {\text{B}}} \right)/{\text{J}}\,{\text{mol}}^{ - 1} & = - 193100 + 44.10T \pm 700\left( {1198{\text{ K to }}1323{\text{ K}}\left( {925^\circ {\text{C to }}1050^\circ {\text{C}}} \right)} \right) \\ \Updelta_{\text{f}} {\text{G}}^\circ (\alpha {\text{MoB}})/{\text{J}}\,{\text{mol}}^{ - 1} & = - 164000 + 26.45T \pm 700\left( {1213{\text{ K to }}1328{\text{ K}}\left( {940^\circ {\text{C to }}1055^\circ {\text{C}}} \right)} \right) \\ \Updelta_{\text{f}} {\text{G}}^\circ \left( {{\text{Mo}}_{2} {\text{B}}_{5} } \right)/{\text{J}}\,{\text{mol}}^{ - 1} & = - 622500 + 117.0T \pm 3000\left( {1205{\text{ K to }}1294{\text{ K}}\left( {932^\circ {\text{C to }}1021^\circ {\text{C}}} \right)} \right) \\ \Updelta_{\text{f}} {\text{G}}^\circ \left( {{\text{MoB}}_{4} } \right)/{\text{J}}\,{\text{mol}}^{ - 1} & = - 387300 + 93.53T \pm 3000\left( {959{\text{ K to }}1153{\text{ K}}\left( {686^\circ {\text{C to }}880^\circ {\text{C}}} \right)} \right) \\ \end{aligned} $$ where the standard pressure is 1 bar (100 kPa).  相似文献   

8.
Roasting of enargite (Cu3AsS4) in the temperature range of 648?K to 898?K (375?°C to 625?°C) in atmospheres containing variable amounts of oxygen has been studied by thermogravimetric methods. From the experimental results of weight loss/gain data and X-ray diffraction (XRD) analysis of partially reacted samples, the reaction mechanism of the enargite oxidation was determined, which occurred in three sequential stages:
  1. $4{\text{Cu}}_{ 3} {\text{AsS}}_{ 4} \left( {\text{s}} \right){\text{ + 13O}}_{ 2} \left( {\text{g}} \right){\text{ = As}}_{ 4} {\text{O}}_{ 6} \left( {\text{g}} \right){\text{ + 6Cu}}_{ 2} {\text{S}}\left( {\text{s}} \right){\text{ + 10SO}}_{ 2} \left( {\text{g}} \right) $
  2. $ 6{\text{Cu}}_{ 2} {\text{S}}\left( {\text{s}} \right){\text{ + 9O}}_{ 2} \left( {\text{g}} \right){\text{ = 6Cu}}_{ 2} {\text{O}}\left( {\text{s}} \right){\text{ + 6SO}}_{ 2} \left( {\text{g}} \right) $
  3. $ 6{\text{Cu}}_{ 2} {\text{O}}\left( {\text{s}} \right){\text{ + 3O}}_{ 2} \left( {\text{g}} \right){\text{ = 12CuO}}\left( {\text{s}} \right) $
The three reactions occurred sequentially, each with constant rate, and they were affected significantly by temperature and partial pressure of oxygen. The kinetics of the first stage were analyzed by using the model X?=?k 1 t. The first stage reaction was on the order of 0.9 with respect to oxygen partial pressure and the activation energy was 44?kJ/mol for the temperature range of 648?K to 898?K (375?°C to 625?°C).  相似文献   

9.
The dissolution kinetics of hemimorphite with low sulfuric acid solution was investigated at high temperature. The dissolution rate of zinc was obtained as a function of dissolution time under the experimental conditions where the effects of sulfuric acid concentration, temperature, and particle size were studied. The results showed that zinc extraction increased with an increase in temperature and sulfuric acid concentration and with a decrease in particle size. A mathematical model able to describe the process kinetics was developed from the shrinking core model, considering the change of the sulfuric acid concentration during dissolution. It was found that the dissolution process followed a shrinking core model with “ash” layer diffusion as the main rate-controlling step. This finding was supported with a linear relationship between the apparent rate constant and the reciprocal of squared particle radius. The reaction order with respect to sulfuric acid concentration was determined to be 0.7993. The apparent activation energy for the dissolution process was determined to be 44.9 kJ/mol in the temperature range of 373 K to 413 K (100 °C to 140 °C). Based on the shrinking core model, the following equation was established: $$ 1.21\ln \left( {1 - 0.83x} \right) - \left[ {1.02\ln \frac{{0.35 + \left( {1 - x} \right)^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} - 0.59\left( {1 - x} \right)^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0pt} 3}}} }}{{0.35 + \left( {1 - x} \right)^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} + 1.18\left( {1 - x} \right)^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0pt} 3}}} }} + 3.52\arctan \left( {1.96\left( {1 - x} \right)^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0pt} 3}}} - 0.58} \right)} \right] + 2.06 = 42,192.59{\text{e}}^{{ - \frac{44,900}{{{\text{R}}T}}}} t. $$   相似文献   

10.
The dissolution kinetics of smithsonite ore in hydrochloric acid solution has been investigated. As such, the effects of particle size (−180 + 150, −250 + 180, −320 + 250, −450 + 320 μm), reaction temperature (25, 30, 35, 40, and 45°C), solid to liquid ratio (25, 50, 100, and 150 g/L) and hydrochloric acid concentration (0.25, 0.5, 1, and 1.5 M) on the dissolution rate of zinc were determined. The experimental data conformed well to the shrinking core model, and the dissolution rate was found to be controlled by surface chemical reaction. From the leaching kinetics analysis it can be demonstrated that hydrochloric acid can easily and readily dissolve zinc present in the smithsonite ore, without any filtration problems. The activation energy of the process was calculated as 59.58 kJ/mol. The order of the reaction with respect to HCl concentration, solid to liquid ratio, and particle size were found to be 0.70, −0.76 and −0.95, respectively. The optimum leaching conditions determined for the smithsonite concentrate in this work were found to be 1.5 M HCl, 45°C, −180 + 150 μm, and 25 g/L solid to liquid (S/L) ratio at 500 rpm, which correspond to more than 95% zinc extraction. The rate of the reaction based on shrinking core model can be expressed by a semi-empirical equation as:
$1 - \left( {1 - X} \right)^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} = k_0 \left[ {HCl} \right]^{0.70} \left( {\frac{S} {L}} \right)^{ - 0.76} r_0^{ - 0.95} \exp \left( {\frac{{ - 59.58}} {{RT}}} \right)t.$1 - \left( {1 - X} \right)^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} = k_0 \left[ {HCl} \right]^{0.70} \left( {\frac{S} {L}} \right)^{ - 0.76} r_0^{ - 0.95} \exp \left( {\frac{{ - 59.58}} {{RT}}} \right)t.  相似文献   

11.
The partial (Δ and the integral (ΔH) enthalpies of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys have been determined by high-temperature isoperibolic calorimetry at 1565 ± 5 K. The heat capacity (C p) of liquid Ni26Zr74 has been measured by adiabatic calorimetry (C p=53.5±2.2 J mol−1 K−1 at 1261±15 K). The integral enthalpy of mixing changes with composition from a small positive (Cu-Ni, ΔH (x Ni=0.50, T=1473 to 1750 K)=2.9 kJ mol−1) to a moderate negative (Cu-Zr; ΔH(x Zr=0.46, T=1485 K)=−16.2 kJ mol−1) and a high negative value (Ni-Zr; ΔH(x Zr=0.37, T=1565 K)=−45.8 kJ mol−1). Regression analysis of new data, together with the literature data for liquid Ni-Zr alloys, results in the following relationships in kJ mol−1 (standard states: Cu (1), Ni (1), and Zr (1)):for Ni-Zr (1281≤T≤2270 K),
for Cu-Ni-Zr (T=1565±5 K),
  相似文献   

12.
13.
14.
Silicon-oxygen equilibria in an Fe-0.003 ~ 27 mass pct Si alloy in equilibrium with the CaO-SiO2 slags were studied in the temperature range of 1823 to 1923 K using a lime crucible. At the same time, nitrogen distribution ratios, LN, between slag and metal were measured, and from these results and the reported values for activities of SiO2, nitride capacities, , defined by (mass pct N). were evaluated. It was found that the values for LN decreased, whereas those for increased with an increase in temperature. Activities of SiO2 were determined using the values for LN and obtained in previous gas-slag experiments. These values were compared with the previous results.  相似文献   

15.
In this article, the effect of different kinetic parameters such as pH, temperature, gold, and reductant concentrations on the rate of Au reduction from aqueous chloride solutions by NaHSO3 is investigated. On the basis of available experimental data, the possible mechanism of [AuCl4] reduction by sulfur(IV) is also assumed. The suggested mechanism yields the rate equation for reduction of [AuCl4], which is given in the form
, with respective rate constants given in the text.  相似文献   

16.
The solubility and diffusivity of fluorine in solid copper were determined electrochemically using the double solid-state cell $$Ni + NiF_2 \left| {CaF_2 } \right|Cu\left| {CaF_2 } \right|Ni + NiF_2 .$$ In the temperature range 757 to 920°C, the diffusivity of fluorine in solid copper was found to be $$D_F \left( {{{cm^2 } \mathord{\left/ {\vphantom {{cm^2 } s}} \right. \kern-\nulldelimiterspace} s}} \right) = 9.32 \times 10^{ - 2} \exp \left( {\frac{{ - 98,910 {J \mathord{\left/ {\vphantom {J {mole}}} \right. \kern-\nulldelimiterspace} {mole}}}} {{RT}}} \right).$$ . The results obtained for the dissolution of fluorine as atoms in solid copper showed large scatter. However, the equilibrium dissolution of fluorine follows Sieverts’ law. Above the melting point (770°C) of CuF2, the mean solubility of fluorine in solid copper, for the equilibrium Cu(s)+ CuF 2(l), follows the relationship $$N_F^s (atom fraction) = 0.98 \exp \left( {\frac{{ - 79,500 {J \mathord{\left/ {\vphantom {J {mole}}} \right. \kern-\nulldelimiterspace} {mole}}}} {{RT}}} \right).$$   相似文献   

17.
In this work, a systematic study of the reaction between xenotime, chlorine, and carbon has been performed. The kinetics of carbochlorination of xenotime raw material (rare-earth elements in phosphate form, REPO4) has been studied over a temperature range from 600 °C to 950 °C. The influences of temperature, partial pressure of chlorine, carbon content, and particle size on the rate of conversion of xenotime to RECl3 were investigated. The results showed that the process follows the unreacted core-shrinking model with formation of a porous product layer. Powder X-ray diffraction (XRD) corroborated this model, showing clearly the patterns related to the formation of yttrium oxychloride (YOCl), indicating that the reaction mechanism involves the presence of an intermediate step before the formation of lanthanide chloride. A global rate equation which includes these parameters has been developed:
  相似文献   

18.
In order to effectively enhance the efficiency of dephosphorization, the distribution ratios of phosphorus between CaO-FeO-SiO2-Al2O3/Na2O/TiO2 slags and carbon-saturated iron (\( L_{\text{P}}^{\text{Fe-C}} \)) were examined through laboratory experiments in this study, along with the effects of different influencing factors such as the temperature and concentrations of the various slag components. Thermodynamic simulations showed that, with the addition of Na2O and Al2O3, the liquid areas of the CaO-FeO-SiO2 slag are enlarged significantly, with Al2O3 and Na2O acting as fluxes when added to the slag in the appropriate concentrations. The experimental data suggested that \( L_{\text{P}}^{\text{Fe-C}} \) increases with an increase in the binary basicity of the slag, with the basicity having a greater effect than the temperature and FeO content; \( L_{\text{P}}^{\text{Fe-C}} \) increases with an increase in the Na2O content and decrease in the Al2O3 content. In contrast to the case for the dephosphorization of molten steel, for the hot-metal dephosphorization process investigated in this study, the FeO content of the slag had a smaller effect on \( L_{\text{P}}^{\text{Fe-C}} \) than did the other factors such as the temperature and slag basicity. Based on the experimental data, by using regression analysis, \( \log L_{\text{P}}^{\text{Fe-C}} \) could be expressed as a function of the temperature and the slag component concentrations as follows:
$$ \begin{aligned} \log L_{\text{P}}^{\text{Fe-C}} & = 0.059({\text{pct}}\;{\text{CaO}}) + 1.583\log ({\text{TFe}}) - 0.052\left( {{\text{pct}}\;{\text{SiO}}_{2} } \right) - 0.014\left( {{\text{pct}}\;{\text{Al}}_{2} {\text{O}}_{3} } \right) \\ \, & \quad + 0.142\left( {{\text{pct}}\;{\text{Na}}_{2} {\text{O}}} \right) - 0.003\left( {{\text{pct}}\;{\text{TiO}}_{2} } \right) + 0.049\left( {{\text{pct}}\;{\text{P}}_{2} {\text{O}}_{5} } \right) + \frac{13{,}527}{T} - 9.87. \\ \end{aligned} $$
  相似文献   

19.
Bismuth is present in copper concentrates mainly as the mineral bismuthinite (Bi2S3). In some cases of smelting of concentrates, a substantial amount of bismuth can lead to contaminated copper cathodes. Thus, understanding the behavior of Bi2S3 at high temperatures is crucial to assessing the potential of bismuth removal in the pyrometallurgical process. Therefore, the oxidation of bismuthinite in mixtures of oxygen?Cnitrogen atmospheres was investigated using a thermogravimetric analysis technique. The results indicate that the oxidation process occurs through the following consecutive reactions: $$ \begin{gathered} {\text{First stage: }}{\text{Bi}}_{ 2} {\text{S}}_{ 3} \left( {\text{s,l}} \right) + 3{\text{O}}_{2} \left( {\text{g}} \right) = 2{\text{Bi}}\left( {\text{l}} \right) + 3{\text{SO}}_{ 2} \left( {\text{g}} \right) \hfill \\ {\text{Second stage: }}2{\text{Bi}}\left( {\text{l}} \right) + 3/2{\text{O}}_{2} \left( {\text{g}} \right) = {\text{Bi}}_{2} {\text{O}}_{3} \left( {\text{s,l}} \right) \hfill \\ \end{gathered} $$ The kinetics of the oxidation of bismuthinite (first stage) was studied, and the model ln(1 ?C X) = ?Ckapp t describes the kinetics of this reaction well. The bismuthinite oxidation dependence on oxygen partial pressure was of 0.9 order, and the intrinsic kinetic constants were obtained in the temperature range of 873 K to 1273 K (600 °C to 1000 °C), which were used to determine the activation energy of 91 kJ/mol. The results indicate that the oxidation of bismuthinite is a process controlled by chemical reactions. From this study, it can be concluded that the removal of bismuth from the Bi2S3-containing concentrates through a mechanism involving gaseous bismuth compounds is not feasible during an oxidizing roasting and/or smelting of concentrates containing Bi2S3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号