首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用溶胶-凝胶法制备Al掺杂ZnO(Al-ZnO)纳米粉体.X射线衍射分析(XRD)和能谱(EDS)表明Al固溶在ZnO的晶格中.采用差示扫描热分析仪(TG-DSC)分析并初步确定影响纳米粉体电性能的因素,如:醋酸锌浓度、柠檬酸三铵浓度、掺杂比例、乙醇与水体积比和煅烧温度等的范围.结合正交设计法对各因素进行优化,得到最佳实验条件为:煅烧温度1 150℃,乙醇与水的体积比1.8∶1,醋酸锌浓度1 mol/L,柠檬酸三铵浓度2 mol/L,Al掺杂质量分数2%.  相似文献   

2.
75 ℃下采用均相沉淀法制备了ZnO微球,并运用XRD、SEM等方法表征了制得的样品,考察了反应时间和磷钨酸浓度对ZnO形貌的影响,讨论了纳米氧化锌的生长机理。结果表明:乙酸锌浓度为0.025 mol/L,三乙醇胺(TEA)浓度为0.100 mol/L,催化剂HPW浓度为1.00×10-3 mol/L条件下,反应2 h制得的ZnO微球粒径均一,分散性良好。  相似文献   

3.
何小红  贺拥军 《应用化工》2005,34(9):563-565
在微波辐射下用草酸二甲酯和硝酸锌为原料,在油包水型微乳液的水核中进行均匀沉淀反应制备出纳米ZnO。用DTA-TGA、XRD和TEM等对产物进行了表征,并考察了微波辐射功率对ZnO纳米的收率和平均粒径的影响作用。结果表明:将0.002 mol的表面活性剂NP-9和17 mL正己醇加入70 mL正庚烷中,再加入8 mL 0.02mol/L草酸二甲酯和0.015 mol/L硝酸锌的混合水溶液,制成微乳液,以功率为50~250 W的微波辐射40 m in,经分离得到草酸锌;将所得草酸锌在500℃焙烧1 h,能够得到纳米ZnO;纳米ZnO为六方晶体,外形近于球形,具有很窄的粒径分布。随着微波辐射功率的增大,纳米ZnO的收率增大,其平均粒径也变大。  相似文献   

4.
《应用化工》2022,(6):1064-1067
以乙醇为溶剂,乙酸锌为前驱物,聚乙烯吡咯烷酮为表面修饰剂,采用溶液化学法,制备了氧化锌纳米粒子。考察反应时间、聚乙烯吡咯烷酮加入量及含水量的影响。通过UV-Vis、FL和TEM等对ZnO纳米粒子进行表征。结果表明,在PVP-乙醇反应体系中加入3 m L浓度33.4 mmol/L乙酸锌水溶液,3 m L水,0.5 g PVP,在80℃反应120 min时,制得氧化锌纳米粒子的效果较好,氧化锌纳米粒子呈规则的球形,具有较好的分散性,粒径约为200 nm,且具有较窄的尺寸分布,证明PVP对ZnO纳米粒子表面具有较好的修饰效果。  相似文献   

5.
《应用化工》2015,(6):1064-1067
以乙醇为溶剂,乙酸锌为前驱物,聚乙烯吡咯烷酮为表面修饰剂,采用溶液化学法,制备了氧化锌纳米粒子。考察反应时间、聚乙烯吡咯烷酮加入量及含水量的影响。通过UV-Vis、FL和TEM等对ZnO纳米粒子进行表征。结果表明,在PVP-乙醇反应体系中加入3 m L浓度33.4 mmol/L乙酸锌水溶液,3 m L水,0.5 g PVP,在80℃反应120 min时,制得氧化锌纳米粒子的效果较好,氧化锌纳米粒子呈规则的球形,具有较好的分散性,粒径约为200 nm,且具有较窄的尺寸分布,证明PVP对ZnO纳米粒子表面具有较好的修饰效果。  相似文献   

6.
均匀沉淀法制备纳米ZnO   总被引:2,自引:0,他引:2  
王赛  周莹  汤林  李青 《贵州化工》2006,31(5):37-39
硝酸锌和尿素的浓度、反应温度以及表面活性剂的种类都是影响均匀沉淀法制备纳米ZnO的重要因素。实验结果表明:均匀沉淀法制备纳米ZnO时,控制硝酸锌的浓度0.6~0.9mol/L,尿素的浓度2.6~2.8mol/L,反应温度95℃,加入表面活性剂能制备出粒径在40~70nmZnO。  相似文献   

7.
作为微生物诱导碳酸钙沉淀(MICP)反应的核心产物,碳酸钙的沉淀特性对其所处理材料的工程性能具有重要的影响。采用全因子实验、X射线衍射仪(XRD)、扫描电子显微镜(SEM)和原子力显微镜(AFM)表征,研究了乙酸钙浓度、菌液浓度和初始溶液pH对克雷白氏杆菌诱导碳酸钙沉淀特性的影响。结果表明,乙酸钙浓度为0.5 mol/L、菌液浓度为ODnature、初始溶液pH=10时,碳酸钙沉淀量最大。乙酸钙浓度为0.25~0.5 mol/L时,方解石和球霰石共存;乙酸钙浓度为1.0 mol/L时,碳酸钙晶体均为球霰石。乙酸钙浓度为0.25 mol/L时,菌液浓度和初始溶液pH对碳酸钙晶型的影响较大。碳酸钙晶体粒径为7.6~15.1 μm,方解石为菱面体状和片状,球霰石为球状及纺锤状。球霰石的平均弹性模量为15.9 GPa,方解石的平均弹性模量为22.7 GPa。三个主要环境因素对克雷白氏杆菌诱导生成的碳酸钙晶体沉淀量、晶体类型和晶体形貌具有调控作用;初始溶液pH对碳酸钙晶体粒径调控作用明显。这对于调控MICP过程及建立碳酸钙晶体的微观性能与其所处理材料的工程性能之间的关系提供...  相似文献   

8.
以氢氧化锶和氟化铵为原料,柠檬酸三钠为络合剂,通过水热法制备出由纳米立方体自组装形成的球形氟化锶颗粒。考察了柠檬酸三钠与氢氧化锶物质的量比、氢氧化锶浓度和水热时间对产物物相及形貌的影响,并探讨其形成机理。采用扫描电镜(SEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)和X射线能谱分析(EDS)等手段对产物形貌和物相进行了表征。结果表明在柠檬酸三钠与氢氧化锶物质的量比为1∶1、氢氧化锶浓度为0.08 mol/L、水热时间为6 h条件下,制备的球形氟化锶形貌规整、粒径均一,过程中加入的柠檬酸三钠对球形结构的形成具有重要作用。  相似文献   

9.
以乙酸锌、氢氧化锂、氯化铜为原料,采用微波辅助加热溶胶-凝胶法制备了不同尺寸的ZnO和Cu(OH)2/ZnO复合型光催化剂,并用XRD、UV-Vis、HR-TEM、IR和SAED对其进行了表征。采用15 W的紫外灯和室外可见光作为光源,活性艳蓝X-BR为光催化反应模型污染物,研究了在各种不同制备条件下ZnO以及Cu(OH)2/ZnO的光催化性能。实验结果表明,在温度50℃下反应10 min,所合成的ZnO粒径最小,为2.59 nm,蓝移现象最明显,说明其光催化活性最佳。在紫外光下,对浓度为40 mg?L?1的活性艳蓝X-BR溶液进行光催化降解,当降解时间为100 min时,光降解率可达到78%。所制备的Cu(OH)2/ZnO(铜锌质量比3:7)复合材料其分散性最好,团聚现象最小。对浓度为40 mg?L?1的活性艳蓝X-BR溶液进行光化学降解,当降解温度为120℃时,光降解率可达到84%。  相似文献   

10.
《应用化工》2017,(3):521-524
以硝酸锌为锌源,碳酸氢铵为沉淀剂,制备纳米ZnO。考察硝酸锌浓度、碳酸氢铵浓度以及反应温度对纳米ZnO结构的影响。通过XRD、BET等方法表征纳米ZnO的晶体结构、孔道结构。结果表明,最佳制备条件为:硝酸锌浓度0.625 mol/L,碳酸氢铵浓度1.5 mol/L,反应温度70℃。以噻吩和正庚烷为原料配制模型油,对其进行脱硫实验,结果表明,NiO/ZnO-Al_2O_3脱硫率可达98%以上,达到了深度脱硫的目的。  相似文献   

11.
以硫酸锌和草酸为原料,采用超声波沉淀法,研究了不同粒径的纳米氧化锌的制备,讨论了不同工艺条件对粒径的影响规律。实验结果表明,采用超声波沉淀法可以制备出平均粒径为21~47nm的纳米氧化锌;反应条件对纳米氧化锌的粒径有显著影响:纳米氧化锌的粒径随草酸与硫酸锌配比的增大而增大,而随反应温度的升高而减小;并且沉淀剂的加入方式对所制备的纳米氧化锌的粒度也有较大影响:一次性将草酸沉淀剂倾倒入锌盐溶液比缓慢滴加所得微粒的粒径较小。  相似文献   

12.
利用溶胶-凝胶浸渍提拉法在导电玻璃(ITO)基板上制备了氧化锌(ZnO)薄膜。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电化学阻抗谱(EIS)等对ZnO薄膜的结构、形貌、以及光电性能进行了分析。结果表明,随着醋酸锌浓度的增加,薄膜由短柱状最终转化为无规则定位生长的聚集球形颗粒结构。随着醋酸锌浓度的升高,薄膜的结晶强度不断增加,薄膜的光电转化效率进一步增加。当醋酸锌浓度为0.9mol/L时,薄膜的光电转化效率为4.5%。  相似文献   

13.
刘桂香  徐光亮  罗庆平  马寒冰 《硅酸盐学报》2012,40(3):373-374,375,376,377,378
以金属离子盐为原料,氨水、乙醇胺为沉淀剂,十二烷基苯磺酸钠、聚乙二醇2000为表面改性剂,采用共沉淀法制备ZnO基纳米复合粉体。以共沉淀法最佳工艺所得粉体制备高压ZnO压敏电阻。采用热重–差示扫描量热分析、X射线衍射、扫描电子显微镜、激光粒径分析对ZnO基复合前驱体及ZnO基纳米复合粉体进行表征,探讨了沉淀剂种类、溶液pH值、Zn2+起始浓度和表面改性剂对粉体粒度的影响。结果表明:以氨水为沉淀剂、溶液体系pH值为6.0、Zn2+浓度为1.0mol/L、聚乙二醇2000为表面改性剂时可制备出粒径分布窄、平均粒径为89nm的ZnO基复合粉体。用该粉体制备的高压ZnO压敏电阻的平均电位梯度为543V/mm,非线性系数为29.3,漏电流为49μA。通过共沉淀工艺,可制备出电性能优良的高压ZnO压敏电阻。  相似文献   

14.
To research the relationship of micro-structures and antibacterial properties of the titanium-doped ZnO powders and probe their antibacterial mechanism, titanium-doped ZnO powders with different shapes and sizes were prepared from different zinc salts by alcohothermal method. The ZnO powders were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED), and the antibacterial activities of titanium-doped ZnO powders on Escherichia coli and Staphylococcus aureus were evaluated. Furthermore, the tested strains were characterized by SEM, and the electrical conductance variation trend of the bacterial suspension was characterized. The results indicate that the morphologies of the powders are different due to preparation from different zinc salts. The XRD results manifest that the samples synthesized from zinc acetate, zinc nitrate, and zinc chloride are zincite ZnO, and the sample synthesized from zinc sulfate is the mixture of ZnO, ZnTiO3, and ZnSO4 · 3Zn (OH)2 crystal. UV-vis spectra show that the absorption edges of the titanium-doped ZnO powders are red shifted to more than 400 nm which are prepared from zinc acetate, zinc nitrate, and zinc chloride. The antibacterial activity of titanium-doped ZnO powders synthesized from zinc chloride is optimal, and its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are lower than 0.25 g L−1. Likewise, when the bacteria are treated by ZnO powders synthesized from zinc chloride, the bacterial cells are damaged most seriously, and the electrical conductance increment of bacterial suspension is slightly high. It can be inferred that the antibacterial properties of the titanium-doped ZnO powders are relevant to the microstructure, particle size, and the crystal. The powders can damage the cell walls; thus, the electrolyte is leaked from cells.  相似文献   

15.
表面活性剂对纳米氧化锌粉体分散性的影响   总被引:1,自引:0,他引:1  
以硝酸锌、碳酸氢铵为原料,通过沉淀反应制备ZnO超细粉体。考察了制备过程中不同种类、添加量的表面活性剂(DBS、PEG、Tw-80)对ZnO粉体平均粒径的影响。试验结果表明:在沉淀过程中添加表面活性剂可抑制前驱体碱式碳酸锌的长大和团聚,制备出的ZnO粒径小,粒径分布范围窄,且Tw-80的分散效果优于DBS和PEG。  相似文献   

16.
以鸡蛋壳为钙源,制备柠檬酸钙,考察了柠檬酸浓度、NaOH浓度、HCl浓度及反应温度对产品产率的影响。结果表明,最佳工艺条件为:柠檬酸浓度为1 mol/L,NaOH溶液浓度为1 mol/L,HCl溶液浓度为1.5 mol/L,反应温度为40℃,反应时间20 min,产品产率可达68.36%以上。  相似文献   

17.
Nano ZnO particles were synthesized by treating zinc oxalate with glycol and amines. The treated nano particles were in-situ grafted on methacrylic acid/butyl acrylate/methyl methacrylate via solution polymerization technique to prevent aggregation in the coating. The characterizations of grafted and treated nano ZnO particles were performed by transmission electron microscopy, atomic force spectroscopy, X-ray diffraction and particle size analysis. The outcome of this surface modification and varying concentrations of nano ZnO has helped in establishing it as an antibacterial additive in hygienic coating.  相似文献   

18.
The interaction between citric acid and alumina in aqueous solution is characterized. Adsorption isotherms of the dispersant on the alumina surface, electrophoretic mobility of the alumina particles as a function of the citric acid concentration, and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy of the citratealumina surface complex have been used. The adsorption behavior of citric acid is dependent on the pH of the suspension and the concentration of the citric acid. The maximum amount of citric acid adsorbed on the alumina surface, 2.17 μ.mol/m2 at pH 3, decreases to 1.17 μmol/m2 at pH 8. The adsorption of citrate causes a highly negatively charged powder surface and a shift of the isoelectric point (IEP) to lower pH values. The IEP of alumina can be fixed at any pH value between 9 and 3 by proper adjustment of the citric acid concentration. In situ ATR-FTIR spectroscopy of the citrate-alumina surface complex gives evidence for a direct interaction between the carboxylate groups of the citrate and the surface aluminum(III) atoms. The rheological properties of alumina suspensions are studied as a function of the citric acid concentration. The data obtained from the viscosity and dynamic electrophoretic measurements correlate well and allow the construction of a stability map of alumina suspensions stabilized with citric acid. The influence of citric acid on the viscosity is discussed using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The interaction potential between the particles is determined by the citrate adsorbed on the surface, leading to a negative particle charge, and the citrate anions remaining in the solution, resulting in an increase of the ionic strength. The adsorption of citric acid also creates a steric barrier that inhibits the complete mutual approach of the individual alumina particles.  相似文献   

19.
将聚吡咯和纳米粒子结合起来制备的复合材料兼具了导电高分子材料、无机半导体材料的优势,与此同时这种的复合材料还具有显著的三阶非线性光学性质。本文拟采用界面氧化聚合法制备聚吡咯膜,通过实验发现反应的最佳溶剂为三氯甲烷,最佳的氧化剂为过硫酸铵。当聚吡咯于过硫酸铵反应浓度均为0.15 mol/L左右时可以生成表面平整、厚度适中、力学性能较好的聚吡咯膜。通过将上述方法制备的聚吡咯膜先浸泡在醋酸镉溶液中吸附Cd2+,最后与硫代乙酰胺处理得到PPy/CdS复合材料。本实验采用了探针式表面轮廓仪分析、扫描电镜(SEM)、傅立叶红外光谱(FTIR)、X-射线衍射(XRD)、Z-扫描测试法、热重(TG)分析等对产物进行表征。结果表明,聚吡咯/硫化镉纳米复合材料上纳米粒子的分布状况及粒子大小与掺比浓度有关,浓度越低分布越密、粒子直径越小,当聚吡咯、硫化镉的掺杂比达到1:0.001时粒子直径可达20 nm左右。此外,复合了硫化镉纳米粒子后聚吡咯的热稳定性提高了33.3%。由Z-扫描结果显示PPy/CdS具有很强的三阶非线性特性。  相似文献   

20.
The role of minor additions of K2O in praseodymium oxide-doped ZnO varistors was investigated by changing the K2O concentration on the one hand and the starting particle size of ZnO on the other. The results of this investigation show that up to 0·3 mol% K2O effectively controls ZnO grain growth, especially with submicron powders, resulting in a considerable increase in the breakdown field. However, when the starting ZnO particle size is larger, higher K2O additions are required in order to have an effective increase of the breakdown field. Hence it is possible to arrive at higher breakdown fields for praseodymium-doped zinc oxide, either by selecting zinc oxide particles in the submicron range or by the controlled use of additives such as K2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号