首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the analysis of the variation of optical absorption coefficient with incident photon energy between 0.8 and 2.6 eV, obtained from ellipsometric data, the energy EG of the fundamental absorption edge and EG′ of the forbidden direct transition for CuInxGa1−xSe2 alloys are estimated. The change in EG and the spin-orbit splitting ΔSO=EG′−EG with the composition x can be represented by parabolic expression of the form EG(x)=EG(0)+ax+bx2 and ΔSO(x)=ΔSO(0)+ax+bx2, respectively. b and b′ are called “bowing parameters”. Theoretical fit gives a=0.875 eV, b=0.198 eV, a′=0.341 eV and b′=−0.431 eV. The positive sign of b and negative sign of b′ are in agreement with the theoretical prediction of Wei and Zunger [Phys. Rev. B 39 (1989) 6279].  相似文献   

2.
We calculate the photoabsorption spectra of bimetallic LixNa20−x (0x20) and of doped Li9H and Na9X (X = F, Cl, Br, I) alkali clusters by means of the time dependent local density approximation. The ground state geometry and electronic structure are obtained by minimization of total energy from Kohn-Sham self-consistent calculations within the spherically averaged pseudopotential method. The results are discussed in relation to the ionic and electronic structures and composition of the clusters. For each cluster in the series LixNa20−x with a given content of lithium we obtain several ionic configurations with nearly the same total energy. These isomeric clusters yield however distinguishable photoabsorption spectra. For doped clusters we assume that the impurity atom is located at the center of the cluster and the alkali atoms form a spherical shell around, resulting photoabsorption spectra in qualitative agreement with available photodepletion experiments.  相似文献   

3.
In2O3 thin films have been prepared from commercially available pure In2O3 powders by high vacuum thermal evaporation (HVTE) and from indium iso-propoxide solutions by sol-gel techniques (SG). The films have been deposited on sapphire substrates provided with platinum interdigital sputtered electrodes. The as-deposited HVTE and SG films have been annealed at 500°C for 24 and 1 h, respectively. The film morphology, crystalline phase and chemical composition have been characterised by SEM, glancing angle XRD and XPS techniques. After annealing at 500°C the films’ microstructure turns from amorphous to crystalline with the development of highly crystalline cubic In2O3−x (JCPDS card 6-0416). XPS characterisation has revealed the formation of stoichiometric In2O3 (HVTE) and nearly stoichiometric In2O3−x (SG) after annealing. SEM characterisation has highlighted substantial morphological differences between the SG (highly porous microstructure) and HVTE (denser) films. All the films show the highest sensitivity to NO2 gas (0.7–7 ppm concentration range), at 250°C working temperature. At this temperature and 0.7 ppm NO2 the calculated sensitivities (S=Rg/Ra) yield S=10 and S=7 for SG and HVTE, respectively. No cross sensitivity have been found by exposing the In2O3 films to CO and CH4. Negligible H2O cross has resulted in the 40–80% relative humidity range, as well as to 1 ppm Cl2 and 10 ppm NO. Only 1000 ppm C2H5OH has resulted to have a significant cross to the NO2 response.  相似文献   

4.
An efficient finite element method is presented for calculating the stress intensity factors (KI and KII) and the weight functions for mixed-mode cracks with one virtual crack extension. The computational efficiency is enhanced through the use of singular elements and the application of colinear virtual crack extension (VCE) technique to symmetric mesh in cracktip neighborhood. This symmetric mesh in crack-tip vicinity permits the analytical separation of strain energy release rate into GI for Mode I and GII for Mode II for the mixed fracture problems with the colinear virtual crack extension.

Rice's displacement derivative representation of weight function vector for symmetric crack has been extended to the mixed fracture mode at nodal location (xi,yi) with crack length (a) and inclination angle (β) as hI(II)(xi, yi, a, β) = (H/2KI(II)(∂UI(II)(xi, yi, a, β/∂a).

This equation permits explicit determination of weight functions for the entire structure of a given asymmetric crack geometry with colinear VCE technique. The explicit weight functions for mixed fracture mode depend strongly on the constraint conditions. The method of obtaining the required stress intensity factors of a given asymmetric crack geometry, from the weight function concept under the selected constraint conditions, which are different from constraint conditions used in the available weight functions for the same crack geometry, is also presented in this paper. This is accomplished by combining the predetermined explicit weight functions with the self-equilibrium forces at their application locations. These self-equilibrium forces include both the applied surface tractions and the reaction forces induced from the constraint conditions.  相似文献   


5.
SrMgxTi1 - xO3 nanocrystals (x = 0.1–0.6) were synthesized by the stearic acid gel method. Powder samples were characterized by X-ray diffraction and X-ray photoelectron (XP) spectroscopy. The results showed that the lattice parameter a and the O 1s XP spectrum changed not only with the Mg content x but also with the grain size d of the samples. The conductivity of a thick film specimen fabricated on an aluminium oxide wafer was investigated in a nitrogen—oxygen atmosphere.  相似文献   

6.
A recently developed solution for the plastic strain, εPy(x, t), on the crack line is used in conjunction with a critical strain criterion to construct curves for kR(a) versus a, where a is the increase in crack length. Resistance curves have been computed for various values of the critical plastic strain. They show a monotonic increase of KR(a) with increase in crack length, to a constant steady-state value.  相似文献   

7.
Experimental data on the phase formation process of amorphous IrxSi1−x thin films with 0.30 ≤ x ≤ 0.41 are presented and discussed in relation to electric transport properties. The structure formation process at temperatures from 300 K up to 1223 K was investigated by means of X-ray diffraction. Distinct phases were observed in the final stage in dependence on the initial composition: Ir3Si4, Ir3Si5, and IrSi3. An unknown metastable phase was found in films with a silicon concentration of 61 at.% to 64 at.% after annealing above the crystallization temperature T = 970 K. The crystal structure of this phase was determined by the combined use of X-ray diffraction and electron diffraction. It was found to be monoclinic, basic-face centred with lattice constants a = 1.027 nm, b = 0.796 nm, c = 0.609 nm, and γ = 113.7°. Additionally, microstructure and morphology of the films were investigated by transmission electron microscopy (TEM). The annealing process was studied by means of mechanical stress investigations as well as by electrical resistivity and thermopower measurements. Correlations between the structure, the phase formation and the electrical transport behaviour are discussed on the basis of conduction mechanism.  相似文献   

8.
Lithium doped silver niobate (Ag1−xLixNbO3, 0 < x < 0.1) is one of the candidate materials for lead-free piezoelectric materials. In this study, Ag1−xLixNbO3 single crystals were successfully grown by a slow cooling method. Crystal structure was assigned to perovskite-type orthorhombic (monoclinic) phase. Dielectric properties were measured as a function of temperature. As a result, with increasing lithium contents, the phase transition at around 60 °C was shifted to lower temperature while the phase transition at around 400 °C was shifted to higher temperature. On the basis of these peak shifts, the lithium contents in Ag1−xLixNbO3 single crystals were determined. Moreover, PE hysteresis measurement revealed that pure silver niobate crystal was weak ferroelectrics with Pr of 0.095 μC/cm2 while Ag0.9Li0.1NbO3 (ALN10) crystal was normal ferroelectrics with Pr of 10.68 μC/cm2. About this ALN10 crystal, polling treatment was performed and finally piezoelectric properties were measured. As a result, high electromechanical coupling coefficient k31 over 70% was observed.  相似文献   

9.
The partial substitution of Zn2+ for Ag+ in Ag4P2O7 leads to the formation of a wide glassy domain of composition [Ag4P2O7] (1−y) [Zn2P2O7] (y) with 0.20y0.87. The introduction of AgI in these materials results in a new series of glasses of formula [(Ag4P2O7)(1−y) (Zn2P2O7)(y)] (1−X) [AgI] (x), which domain for the composition y = 0.25 corresponds to 0x 0.64. The structure as well as the thermal and electrical properties of these materials are compared with those of the [AgPO3] (1−X) [AgI] (x) and [Ag4P2O7] (1−x) [AgI] (x) glasses.  相似文献   

10.
分别采用超声微波溶剂热法、常压溶剂热法及高压溶剂热法制备In2Se3/CuSe粉体, 研究不同方法制备In2Se3/CuSe粉体的物相、形貌, 并利用涂覆-快速热处理法制作薄膜太阳电池吸收层。通过XRD、Raman、FESEM和TEM对样品的物相、形貌和组成进行了表征。结果表明: 超声微波溶剂热法和常压溶剂热法得到的产物是以In2Se3+CuSe混合相的形式存在, 高压溶剂热法合成的In2Se3/CuSe粉体则呈核壳结构, (以In2Se3为核, CuSe为壳)。涂覆-快速热处理法制备CIS薄膜的FESEM照片结果表明, 高压溶剂热法合成的In2Se3/CuSe更容易获得平整致密的薄膜。将该CIS薄膜直接用于电池器件的组装, 获得的光电性能参数: Voc为50 mV, Jsc为8 mA/cm2。  相似文献   

11.
Nous avons obtenu par épitaxie à partir d'une phase vapeur des couches minces monocristallines de ZnSexSe1−x (0 < x < 1) sur un substrat de fluorine (CaF2) d'épaisseur comprise entre 5 et 30 microm. La méthode utilisée est le transport en tube ouvert, à partir de deux sources (ZnSe et ZnS en poudre), sous flux d'hydrogène. Les vitesses de croissance sont fonction de la température de substrat. L'étude en luminescence montre que ces couches d'orientation (111) sont de bonne qualité.  相似文献   

12.
Nickel-rich phases of the solid solutions, LiNi1−yCoyO2 (y=0.1, 0.2, 0.3), were synthesized by a sol–gel method with citric acid as a chelating agent. Various initial conditions were studied in order to find the optimal conditions for the synthesis of LiNi0.8Co0.2O2. The discharge capacity for the compound synthesized under an optimal synthesis condition of 800 °C for 12 h was found to be 187 mAh g−1 in the 1st cycle and it was 176 mAh g−1 after 10 cycles. The other nickel-rich phases, namely, LiNi0.9Co0.1O2 and LiNi0.7Co0.3O2 showed 1st-cycle discharge capacities of 144 and 163 mAh g−1, respectively. The corresponding capacity values were 140 and 159 mAh g−1 in the 10th cycle. Excess lithium stoichiometric phases, LixNi0.8Co0.2O2, where x=1.10, 1.15 and 1.20, resulted in decreased capacity. Structural and electrochemical properties of the synthesized compounds were compared with those of a commercial LiNi0.8Co0.2O2 sample. The effect of calcination temperature and duration, excess lithium stoichiometry and divalent strontium doping in LiNi0.8Co0.2O2 are described. Doping with strontium improved both the capacity and cycling performance of LiNi0.8Co0.2O2.  相似文献   

13.
The crystallization kinetics in SbxSe100−x films with 39≤x≤58is studied by monitoring the optical transmission of the films during both isothermal and constant rate heatings. The structure of the films upon crystallization and at certain intermediate stages is studied by electron microscopy techniques. The results are analyzed in the frame of the Johnson-Mehl-Avrami theory in order to determine the kinetic parameters (Avrami exponent, activation energy and frequency factor) in addition to the crystallization temperature. The results show that film crystallization is always preceeded by a relaxation process which modifies substantially the optical properties of the amorphous material. Amorphous films with compositions close to the stoichiometric compound (Sb2Se3) are found to show the highest activation energy for crystallization.  相似文献   

14.
具有本征低晶格热导率的I-V-VI2族三元硫属化合物在热电领域引起了广泛关注。AgBiSe2作为这类化合物中少有的n型半导体, 成为一种有潜力的热电材料。本工作系统研究了AgBiSe2的热电性能。基于Ag2Se-Bi2Se二元相图, 单相的(Ag2Se)1-x(Bi2Se3)x的成分在x=0.4~0.62范围可调, 使得该材料载流子浓度具有可调性。结果表明, 通过组分调控获得了较宽范围的载体浓度1.0×1019~5.7×1019 cm-3, 并基于声学声子散射的单一抛物带模型对其电传输性能进行了综合评估。本研究获得的最高载流子浓度接近理论最优值, 在700 K实现了最高ZT值0.5。本研究有助于深入理解AgBiSe2的传输特性和决定热电性能的基本物理参数。  相似文献   

15.
The fracture toughness of a 30 CrMnSiA steel plate of three thicknesses (10,8 and 5 mm) and three widths (110,80 and 56 mm) has been investigated by using surface-flaw method under room temperature. It is not easy to compute the value of KIE by the maximum applied load. But the values of KIE and KIC could be obtained easily, if the computation of the conditional applied load P10 and P5 based on the relative effective extension Δa/a0 = 10% and 5% were adopted, together with the conditions of Pmax/P10 1.2 and Pmax/P5 1.3. The KR — Δa curve, i.e. the resistance-curve described by the parameter K, has been plotted. The values of KIC and KIE are then the resistances corresponding to the real extensions of flaws of Δ/a0 = 2 and 7%, respectively. These values so obtained are in good agreement with the computed values of KIC and KIE by using the conditional applied loads. The values of KIC and KIE so obtained are also in agreement with the value of KIC converted from the J-integral and the effective value of KIE computed by the maximum applied load, respectively.

An approximate relation between KIC and KIE has been found to be: KIC = (0.85˜0.95)KIE.

The requirements for the dimensions of specimens are: Thickness of plate: B 1.0(KIC0.2)2 or 1.25(KICσ0.2)2]; Width of plate: 8 W/B 10, 4 W/2c 5; Effective length: l 2W.  相似文献   


16.
The BaxSr1−xTiO3 (BST)/Pb1−xLaxTiO3 (PLT) composite thick films (20 μm) with 12 mol% amount of xPbO–(1 − x)B2O3 glass additives (x = 0.2, 0.35, 0.5, 0.65 and 0.8) have been prepared by screen-printing the paste onto the alumina substrates with silver bottom electrode. X-ray diffraction (XRD), scanning electron microscope (SEM) and an impedance analyzer and an electrometer were used to analyze the phase structures, morphologies and dielectric and pyroelectric properties of the composite thick films, respectively. The wetting and infiltration of the liquid phase on the particles results in the densification of the composite thick films sintered at 750 °C. Nice porous structure formed in the composite thick films with xPbO–(1 − x)B2O3 glass as the PbO content (x) is 0.5 ≥ x ≥ 0.35, while dense structure formed in these thick films as the PbO content (x) is 0.8 ≥ x ≥ 0.65. The volatilization of the PbO in PLT and the interdiffusion between the PLT and the glass lead to the reduction of the c-axis of the PLT phase. The operating temperature range of our composite thick films is 0–200 °C. At room temperature (20 °C), the BST/PLT composite thick films with 0.35PbO–0.65B2O3 glass additives provided low heat capacity and good pyroelectric figure-of-merit because of their porous structure. The pyroelectric coefficient and figure-of-merit FD are 364 μC/(m2 K) and 14.3 μPa−1/2, respectively. These good pyroelectric properties as well as being able to produce low-cost devices make this kind of thick films a promising candidate for high-performance pyroelectric applications.  相似文献   

17.
We consider a Ginzburg-Landau model free energy F(ε, e1, e2) for a (2D) martensitic transition, that provides a unified understanding of varied twin/tweed textures. Here F is a triple well potential in the rectangular strain (ε) order parameter and quadratic e12, e22 in the compressional and shear strains, respectively. Random compositional fluctuations η(r) (e.g. in an alloy) are gradient-coupled to ε, ˜ − ∑rε(r)[(Δx2 − Δy2)η(r)] in a “local-stress” model. We find that the compatibility condition (linking tensor components ε(r) and e1(r), e2(r)), together with local variations such as interfaces or η(r) fluctuations, can drive the formation of global elastic textures, through long-range and anisotropic effective ε-ε interactions. We have carried out extensive relaxational computer simulations using the time-dependent Ginzburg-Landau (TDGL) equation that supports our analytic work and shows the spontaneous formation of parallel twins, and chequer-board tweed. The observed microstructure in NiAl and FexPd1 − x alloys can be explained on the basis of our analysis and simulations.  相似文献   

18.
Measurements of optical constants (absorption coefficient, refractive index, extinction coefficient, real and imaginary part of the dielectric constant) have been made on a-(Se70Te30)100−x (Se98Bi2)x thin films (where x=0, 5, 10, 15 and 20) of thickness 2000 Å in the wavelength range 450–1000 nm. It is found that the optical bandgap decreases with the increase of Se98Bi2 concentration in the a-(Se70Te30)100−x(Se98Bi2)x system. The value of refractive index (n) decreases, while the extinction coefficient (k) increases with increasing photon energy. The results are interpreted in terms of concentration of localized states varying effective Fermi level.  相似文献   

19.
Transparent glasses in the system (100−x)Li2B4O7x(SrO---Bi2O3---Nb2O5) (10≤x≤60) (in molar ratio) were fabricated by a conventional melt-quenching technique. Amorphous and glassy characteristics of the as-quenched samples were established via X-ray powder diffraction (XRD) and differential thermal analyses (DTA) respectively. Glass–ceramics embedded with strontium bismuth niobate, SrBi2Nb2O9 (SBN) nanocrystals were produced by heat-treating the as-quenched glasses at temperatures higher than 500 °C. Perovskite SBN phase formation through an intermediate fluorite phase in the glass matrix was confirmed by XRD and transmission electron microscopy (TEM). Infrared and Raman spectroscopic studies corroborate the observation of fluorite phase formation. The dielectric constant (r) and the loss factor (D) for the lithium borate, Li2B4O7 (LBO) glass comprising randomly oriented SBN nanocrystals were determined and compared with those predicted based on the various dielectric mixture rule formalism. The dielectric constant was found to increase with increasing SBN content in LBO glass matrix.  相似文献   

20.
Stress corrosion crack growth rates are measured at sveral stress intensity levels for low-tempered 4340 steel in 0.1N H2SO4 solution. The characteristics of the growth rates are divided into three regions of stress intensity factors: Region I near K1SCC; Region III near unstable fracture toughness, K1SC; and Region II, which lies between the two. K1SCC is the value of K at which no crack growth can be detected after 240 hr.

In order to explain these experimental results, the crack initiation analysis reported in a previous paper is extended to the growth rates. A detached crack initiates and grows at the tip of an already existing crack. When the detached crack reaches the tip of the main crack, the process repeats as a new existing crack.

A relationship between crack growth rate, v, and stress intensity factor, K, is obtained as a function of b/a and a = b + d, where b is the distance from the tip of the main crack to the detached crack, and d is the ydrogen atom saturated domain.

The experimental data are in good agreement with the theoretical values in Region II when a = 0.02 mm, b/a = 0.8, c1/c0 = 2.8 for 200°C tempered specimens and a = 0.015 mm, b/a = 0.7, c1/c0 = 3.0, ρb = 0.055 mm for 400°C tempered specimens, where ρb is a fictitious notch radius. The plateau part in Region II for 400°C tempered specimens is also successfully explained by the present theory. For Region III, the value of b/a will be almost equal to 1 because v → ∞ for b/a → 1. On the other hand, for Region I, b/a will be zero, since the value of v becomes negligibly small and no crack growth is observable.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号