首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A macroporous silicon layer (ma-PS) electrochemically grown on crystalline silicon surface can be used as an efficient antireflective layer in optical devices as antireflection coating. In this work, we presented the ma-PS layers fabricated on crystalline silicon (c-Si) n-type and p +-type, obtained by electrochemical etching. The morphology, porosity, thickness of ma-PS layer can be adjusted by controlling the electrochemical formation conditions. The optical behaviour of the antireflective coating over the solar spectrum is determined, resulting in very low values of the normalized reflectivity coefficient (below ~1%). The reflectivity measurements were evaluated at 45° in the different samples of the ma-PS/c-Si.  相似文献   

2.
In this paper, the optical properties of black silicon have been studied. The black silicon samples were fabricated by alkaline etching and metal assisted etching. The micro-columns and nanopores on the silicon surface were obtained in KOH and Au-induced HF/H2O2 solution, respectively. The height and diameter of micro-columns prepared by KOH etching is about 470?nm and 2?μm. In the Au-induced HF/H2O2 etching, the metallic nuclei behave as a cathode and their surrounding area acts as an anode, resulting in nanopores with diameters ranging from 80 to 120?nm. These microstructures formed in the etching process directly affect the optical properties of black silicon such as reflectance, transmittance and absorptance. According to the measurement of integrating sphere detector, the absorptance of the black silicon produced by wet etching remains roughly 90% from 250 to 1,000?nm wavelength, which is almost 150% of the absorptance of conventional silicon. However, the reflectance of black silicon is less than 13% and the transmittance is less than 4%.  相似文献   

3.
Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layers were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The structure of porous Si layers was investigated using SEM. The formation of a nanoporous Si layer on the textured silicon wafer result in a reflectance lower than 5% in the wavelength region from 500 to 900 nm. Such a surface modification allows improving the Si solar cell characteristics. An efficiency of 13.4% is achieved on a monocrystalline silicon solar cell using the electrochemical technique.  相似文献   

4.
The polarization and intensity of light scattered by polystyrene latex and copper spheres with diameters of approximately 100 nm deposited onto silicon substrates containing various thicknesses of oxide films were measured with 532-nm light. The results are compared with a theory for scattering by a sphere on a surface, originally developed by others [Physica A 137, 209 (1986)] and extended to include coatings on the substrate. Nonlinear least-squares fits of the theory to the observations yield results that were consistent with differential mobility measurements of the particle diameter.  相似文献   

5.
针对标准单晶硅球直径精密测量的需要,本文在介绍标准硅球直径测量系统原理并分析其光路特点的基础上,根据建立的数学模型,对激光束斜入射标准板时产生的椭圆干涉图像进行了分析,并对不同入射角度时干涉环中心点带来的直径测量误差进行了研究.分析结果显示,在给定的实验条件下,当入射角为10~(-3) rad时,误差已达6.6nm.提出了一种精确调整光束垂直入射平板的方法,实验结果表明,此方法能够使光束入射角的调整优于10~(-5)rad,满足系统测量的要求.  相似文献   

6.
Nanoscale textured silicon and its passivation are explored by simple low-cost metal-assisted chemical etching and thermal oxidation, and large-area black silicon was fabricated both on single-crystalline Si and multicrystalline Si for solar cell applications. When the Si surface was etched by HF/AgNO(3) solution for 4 or 5 min, nanopores formed in the Si surface, 50-100 nm in diameter and 200-300 nm deep. The nanoscale textured silicon surface turns into an effective medium with a gradually varying refractive index, which leads to the low reflectivity and black appearance of the samples. Mean reflectance was reduced to as low as 2% for crystalline Si and 4% for multicrystalline Si from 300 to 1000 nm, with no antireflective (AR) coating. A black-etched multicrystalline-Si of 156 mm × 156 mm was used to fabricate a primary solar cell with no surface passivation or AR coating. Its conversion efficiency (η) was 11.5%. The cell conversion efficiency was increased greatly by using surface passivation process, which proved very useful in suppressing excess carrier recombination on the nanostructured surface. Finally, a black m-Si cell with efficiency of 15.8% was achieved by using SiO(2) and SiN(X) bilayer passivation structure, indicating that passivation plays a key role in large-scale manufacture of black silicon solar cells.  相似文献   

7.
To replace the double layer antireflection coating and improve the efficiency of solar cell, a self assembled nickel nano particle mask followed by inductively coupled plasma (ICP) ion etching method is proposed to form the sub-wavelength structures (SWS) on silicon nitride (Si3N4) antireflection coating layers instead of semiconductor layer. The size and density of nickel nano particles can be controlled by the initial thickness of nickel film that is annealed to form the nano-particles on the Si3N4 film deposited on the silicon substrate. ICP etching time is responsible for controlling the height of the fabricated Si3N4 SWS on silicon substrate, which is seen from our experiment. It is found that the lowest average reflectivity of 3.12% for wavelength ranging from 350 to 1000 nm is achieved when the diameter and height of the SWS are 120-180 nm and 150-160 nm, respectively. A low reflectance below 1% is observed over the wavelength from 590 to 680 nm for the fabricated Si3N4 SWS on silicon subs. The efficiency of Si3N4 SWS could be improved by 1.31%, compared with the single layer anti-reflection (SLAR) coatings of Si3N4, using PC1D program. The results of this study may benefit the fabrication of solar cells.  相似文献   

8.
Arrays of nanostructures are made starting with a template of close-packed, polystyrene spheres on a silicon surface. The spheres are either 1.091 or 2.99?μm in diameter (d) and are of polystyrene (PS). They are irradiated with a pulse of either 308 or 248?nm light to which they are transparent and semitransparent, respectively. A transparent sphere with d = 1.091?μm diameter concentrates incident light onto a small substrate area. As has been previously reported, that creates silicon nanobumps that rise from circular craters. At 248?nm and d = 2.99?μm, the light energy is mainly absorbed, destroys the sphere, and leaves a shrunken mass (typically about 500?nm wide and 100?nm high) of organic material that is probably polystyrene and its thermal degradation products. At 248?nm and d = 1.091?μm, the residual organic structures are on the order of 300?nm wide and 100?nm high. A distinctive feature is that these organic structures are connected by filaments that are on the order of 50?nm wide and 10?nm high. Filaments form because the close-packed PS spheres expand into each other during the early part of the laser pulse, and then, as the main structures shrink, their viscoelasticity leads to threads between them. Our results with 248?nm and d = 1.091?μm differ from those described by Huang et al with 248?nm and d = 1.0?μm. Future studies might include the further effect of wavelength and fluence upon the process as well the use of other materials and the replacement of nanospheres by other focusing shapes, such as ellipsoids or rods.  相似文献   

9.
The use of biological-probe-modified solid-state pores in biosensing is currently hindered by difficulties in pore-wall functionalization. The surface to be functionalized is small and difficult to target and is usually chemically similar to the bulk membrane. Herein, we demonstrate the contactless electrofunctionalization (CLEF) approach and its mechanism. This technique enables the one-step local functionalization of the single pore wall fabricated in a silica-covered silicon membrane. CLEF is induced by polarization of the pore membrane in an electric field and requires a sandwich-like composition and a conducting or semiconducting core for the pore membrane. The defects in the silica layer of the micropore wall enable the creation of an electric pathway through the silica layer, which allows electrochemical reactions to take place locally on the pore wall. The pore diameter is not a limiting factor for local wall modification using CLEF. Nanopores with a diameter of 200 nm fabricated in a silicon membrane and covered with native silica layer have been successfully functionalized with this method, and localized pore-wall modification was obtained. Furthermore, through proof-of-concept experiments using ODN-modified nanopores, we show that functionalized nanopores are suitable for translocation-based biosensing.  相似文献   

10.
A detailed analysis of the neutron radiation field was performed at selected positions inside the Krümmel boiling water reactor. The measurements were performed with the PTB Bonner sphere spectrometer and with a newly developed directional neutron spectrometer based on silicon detectors mounted onto the surface of a 30 cm diameter polyethylene sphere. Both, angle-integrated and angle-differential spectral neutron fluences were determined in this way.  相似文献   

11.
Silicon waveguide optical non-reciprocal devices based on the magneto-optical effect are reviewed. The non-reciprocal phase shift caused by the first-order magneto-optical effect is effective in realizing optical non-reciprocal devices in silicon waveguide platforms. In a silicon-on-insulator waveguide, the low refractive index of the buried oxide layer enhances the magneto-optical phase shift, which reduces the device footprints. A surface activated direct bonding technique was developed to integrate a magneto-optical garnet crystal on the silicon waveguides. A silicon waveguide optical isolator based on the magneto-optical phase shift was demonstrated with an optical isolation of 30 dB and insertion loss of 13 dB at a wavelength of 1548 nm. Furthermore, a four port optical circulator was demonstrated with maximum isolations of 15.3 and 9.3 dB in cross and bar ports, respectively, at a wavelength of 1531 nm.  相似文献   

12.
A broadband all-optical ultrasound transducer has been designed, fabricated, and evaluated for high- frequency ultrasound imaging. The device consists of a 2-D gold nanostructure imprinted on top of a glass substrate, followed by a 3 microm PDMS layer and a 30 nm gold layer. A laser pulse at the resonance wavelength of the gold nanostructure is focused onto the surface for ultrasound generation, while the gold nanostructure, together with the 30 nm thick gold layer and the PDMS layer in between, forms an etalon for ultrasound detection, which uses a CW laser at a wavelength far from resonance as the probing beam. The center frequency of a pulse-echo signal recorded in the far field of the transducer is 40 MHz with -6 dB bandwidth of 57 MHz. The signal to noise ratio (SNR) from a 70 microm diameter transmit element combined with a 20 microm diameter receive element probing a near perfect reflector positioned 1.5 mm from the transducer surface is more than 10 dB and has the potential to be improved by at least another 40 dB. A high-frequency ultrasound array has been emulated using multiple measurements from the transducer while mechanically scanning an imaging target. Characterization of the device's optical and acoustical properties, as well as preliminary imaging results, strongly suggest that all-optical ultrasound transducers can be used to build high-frequency arrays for real-time high-resolution ultrasound imaging.  相似文献   

13.
《Materials Letters》2004,58(17-18):2261-2265
A SOI-based optoelectronic device needs a high-quality antireflection coating on both faces of the device to minimize the optical reflectance from the face. In this work amorphous silicon oxynitride films were deposited on silicon substrates by ion beam assisted deposition (IBAD). The main purpose was to use silicon oxynitride film as single layer anti-reflection coating for SOI-based optoelectronic devices. This application is primarily based on the ability to tune the silicon oxynitride optical functions to the optimal values by changing deposition parameters. The chemical information was measured by X-ray photoelectron spectroscopy (XPS). Spectroscopic ellipsometry (SE) was applied to measure the refractive index and thickness. Single-side polished silicon substrate that was coated with silicon oxynitride film exhibited low reflectance. Double-side polished silicon substrate that was coated with silicon oxynitride film exhibited high transmittance. In addition, the Fresnel losses could be reduced to 0.08 dB by depositing silicon oxynitride films onto double-side polished silicon substrates. The results suggested silicon oxynitride film was a very attractive single layer anti-reflection coating for SOI-based optoelectronic device.  相似文献   

14.
Presented here is an examination of unstructured and structured (by anisotropic etching), monocrystalline silicon wafers coated with sputter deposited aluminum and chemical vapor deposited silicon dioxide for high solar reflectance and high thermal emittance, respectively. The topography of the samples was characterized with optical and scanning electron microscopy. Optical properties were examined with reflectance and transmittance spectroscopy, partly by usage of an integrating sphere. The measurement results were used to estimate the equilibrium temperature of the surfaces in space. The suitability of the surfaces with high solar reflectance and high thermal emittance to aid in the thermal control of miniaturized, highly integrated components for space applications is discussed. A silicon dioxide layer on a metal layer results in a slightly lower reflectance when compared to surfaces with only a metal layer, but might be beneficial for miniaturized space components and modules that have to dissipate internally generated heat into open space. Additionally, it is an advantage to microstructure the emitting surface for enhanced radiation of excess heat.  相似文献   

15.
We have studied the optical transmission spectrum of a surface film of erbium oxide and evaluated the effect of clarification for the surface of a silicon-based photovoltaic converter with an antireflection coating of this material. It is established that erbium oxide films are highly transparent in a broad wavelength range from 250 to 1050 nm and ensure a decrease in the coefficient of reflection of a silicon surface down to 1–4.5%. The antireflection coating of erbium oxide increases the short-circuit photocurrent of the silicon-based photovoltaic converter by more than 38%.  相似文献   

16.
Weber J  Bartzsch H  Frach P 《Applied optics》2008,47(13):C288-C292
The optical properties of silicon oxynitride films deposited by reactive dc magnetron sputtered films have been investigated. In particular the absorption characteristics of silicon nitride thin films in the visible spectrum and their optical bandgap were analyzed with regard to their composition and deposition properties. It can be shown that there is a significant difference between the absorption in the visible spectrum and the optical bandgap for these layers. The influence of unipolar and bipolar pulse modes on the optical layer properties is presented. The extinction coefficient for silicon nitride single layers could be reduced to a value of 2 x 10(-4) at 500 nm without external heating. There is also the dependence of the absorption of silicon oxynitride layers on the discharge voltage. We present the resulting spectra of rugate and edge filters that consist of these layers and offer lower absorption than single layers.  相似文献   

17.
ZnO nanostructures as efficient antireflection layers in solar cells   总被引:1,自引:0,他引:1  
Lee YJ  Ruby DS  Peters DW  McKenzie BB  Hsu JW 《Nano letters》2008,8(5):1501-1505
An efficient antireflection coating (ARC) can enhance solar cell performance through increased light coupling. Here, we investigate solution-grown ZnO nanostructures as ARCs for Si solar cells and compare them to conventional single layer ARCs. We find that nanoscale morphology, controlled through synthetic chemistry, has a great effect on the macroscopic ARC performance. Compared with a silicon nitride (SiN) single layer ARC, ZnO nanorod arrays display a broadband reflection suppression from 400 to 1200 nm. For a tapered nanorod array with average tip diameter of 10 nm, we achieve a weighted global reflectance of 6.6%, which is superior to an optimized SiN single layer ARC. Calculations using rigorous coupled wave analysis suggest that the tapered nanorod arrays behave like modified single layer ARCs, where the tapering leads to impedance matching between Si and air through a gradual reduction of the effective refractive index away from the surface, resulting in low reflection particularly at longer wavelengths and eliminating interference fringes through roughening of the air-ZnO interface. According to the calculations, we may further improve ARC performance by tailoring the thickness of the bottom fused ZnO layer and through better control of tip tapering.  相似文献   

18.
Advanced nuclear power reactor designs such as (Very) High Temperature Reactors (V/HTR) employ TRISO fuel particles that typically have a sub-millimetre U-based fuel kernel coated with three isotropic ceramic layers—a layer of silicon carbide sandwiched between pyrocarbon layers of different density. Evaluation of the ceramic layer thickness and of the degree of sphericity of these typical nuclear fuel particles is required at each step of the fabrication, in order to estimate future fuel performance under irradiation conditions. This study is based on the image processing of polished cross-sections, realized near the equatorial plane. From these 2D images, some measurements are carried out, giving an estimation of the diameter values for a sample of particles at each step of the coating process. These values are then statistically extended to the third dimension in order to obtain the thickness of each layer and the degree of sphericity of each particle. A representation of diameter and layer thickness in polar coordinates enables one to identify steps for which the coating process is defective or deviating from nominal objectives.  相似文献   

19.
We demonstrate synthesis, electrical and magnetic characterization of silicon carbo-nitride (SiCN) coated multiwalled carbon nanotubes in a core-shell structure. The core formed by a carbon nanotube had a diameter in the range of 10-100 nm. The shell was synthesized by pyrolysis of an SiCN precursor on the surface of carbon nanotubes. Electrical resistivity of an individual composite nanotube was measured to be ~ 2.55 × 103 Ω cm. The magnetic measurements performed by a superconducting quantum interference device on the composite nanotubes in the temperature range of 5-300 K show a reduced coercive field with increasing temperatures. The monolayer thick coating of an ultra high temperature multifunctional ceramic SiCN makes these composite nanotubes very promising for sensing applications in harsh environments.  相似文献   

20.
A thin-gold-film-covered titanium transition edge sensor is newly developed for highly reliable optical photon detection. The aim of the gold film is to prevent a formation of a surface oxidation layer (typically 2.8?nm) on titanium that causes severe degradation of the titanium superconductivity. Optical properties for the gold-covered titanium TES embedded in an optical cavity are calculated, and we find that the maximum absorptance and absorption bandwidth will be reduced with increasing a thickness of the gold film. However, more than 99% absorptance can be possible for the gold (10?nm in thickness) and titanium (30?nm) if 11 dielectric layers are used in an anti-reflection coating. A depth profile of a chemical state for the fabricated device was analysed by an X-ray photoelectron spectroscopy. The profile shows no evidence of TiO2 existence in photoelectron spectrum. Superconducting critical temperature covered with the 10?nm gold were in the range of 200?mK to 320?mK depending on the titanium thickness of 18?nm to 26?nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号