首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusaric acid     
The ability of naturally occurring levels of theFusarium spp. fungal metabolite fusaric acid to synergize the toxicity of the allelochemicals gossypol, a saponin, and 6-methoxy-2-benzoxazolinone to larvae ofHeliothis zea (Boddie) was tested. Levels of fusaric acid comparable to those found near the fungus increased mortality ofH. zea to gossypol, the saponin, and 6-methoxy-2-benzoxazolinone, and decreased the development rate of surviving larvae exposed to gossypol and 6-methoxy-2-benzoxazolinone. Some effect was also noted for levels of fusaric acid found generally distributed throughout infected plants. The chemical properties of fusaric acid suggest that it synergizes the toxicity of the allelochemicals by inhibiting oxidative enzymes responsible for detoxification. Production of the biosynthetically simple fusaric acid may be a fungal strategy for conserving resources as compared to those fungi that produce biosynthetically complex toxins of their own.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

2.
The use of chemicals to boost food production increases as human consumption also increases. The insectidal, nematicidal and acaricidal chemical carbofuran (CAF), is among the highly toxic carbamate pesticide used today. Alongside, copper oxide nanoparticles (CuO) are also used as pesticides due to their broad-spectrum antimicrobial activity. The overuse of these pesticides may lead to leaching into the aquatic environments and could potentially cause adverse effects to aquatic animals. The aim of this study is to assess the effects of carbofuran and copper oxide nanoparticles into the cardiovascular system of zebrafish and unveil the mechanism behind them. We found that a combination of copper oxide nanoparticle and carbofuran increases cardiac edema in zebrafish larvae and disturbs cardiac rhythm of zebrafish. Furthermore, molecular docking data show that carbofuran inhibits acetylcholinesterase (AChE) activity in silico, thus leading to impair cardiac rhythms. Overall, our data suggest that copper oxide nanoparticle and carbofuran combinations work synergistically to enhance toxicity on the cardiovascular performance of zebrafish larvae.  相似文献   

3.
Ecological consequences of chemically mediated prey perception   总被引:4,自引:0,他引:4  
To locate food, mobile consumers in aquatic habitats perceive and move towards sources of attractive chemicals. There has been much progress in understanding how consumers use chemicals to identify and locate prey despite the elusive identity of odor signals and the complex effects of turbulence on chemical dispersion. This review highlights how integrative studies on behavior, fluid physics, and chemical isolation can be fundamental in elucidating mechanisms that regulate species composition and distribution. We suggest three areas where further research may yield important ecological insights. First, although basic aspects of stimulatory molecules are known, our understanding of how consumers identify prey from a distance remains poor, and the lack of studies examining the influence of distance perception on food preference may result in inaccurate estimation of foraging behavior in the field. Second, the ability of many animals to find prey is greatest in unidirectional, low turbulence flow environments, although recent evidence indicates a trade-off in movement speed versus tracking ability in turbulent conditions. This suggests that predator foraging mode may affect competitive interactions among consumers, and that turbulence provides a hydrodynamic refuge in space or time, leading to particular associations between predator success, prey distributions, and flow. Third, studies have been biased towards examining predator tracking. Current data suggest a variety of mechanisms prey may use to disguise their presence and avoid predation; these mechanisms also may produce associations between prey and flow environments. These examples of how chemical attraction may mediate interactions between consumers and their resources suggest that the ecology of chemically mediated prey perception may be as fundamental to the organization of aquatic communities as the ecology of chemical deterrence.  相似文献   

4.
Hyaluronic acid (HA), with diverse cosmetic and medical applications, is the natural glycosaminoglycan product of HA synthases. Although process and/or metabolic engineering are used for industrial HA production, the potential of protein engineering has barely been realised. Herein, knowledge‐gaining directed evolution (KnowVolution) was employed to generate an HA synthase variant from Pasteurella multocida (pmHAS) with improved chain‐length specificity and a twofold increase in mass‐based turnover number. Seven improved pmHAS variants out of 1392 generated by error‐prone PCR were identified; eight prospective positions were saturated and the most beneficial amino acid substitutions were recombined. After one round of KnowVolution, the longest HA polymer (<4.7 MDa), through an engineered pmHAS variant in a cell‐free system, was synthesised. Computational studies showed that substitutions from the best variant (T40L, V59M and T104A) are distant from the glycosyltransferase sites and increase the flexibility of the N‐terminal region of pmHAS. Taken together, these findings suggest that the N terminus may be involved in HA synthesis and demonstrate the potential of protein engineering towards improved HA synthase activity.  相似文献   

5.
Eco‐friendly and inexpensive “ green” nanocomposites with enhanced functional performances were developed by combining nanoscale hydroxyapatite (HA) synthesized from eggshell waste (nEHA) and protein‐based polymer extracted from defatted soybean residues. nEHA was synthesized from chicken eggshells using an energy efficient microwave‐assisted wet chemical precipitation method. Transmission electron microscopy, X‐ray diffraction, and energy‐dispersive X‐ray spectroscopy studies confirmed the nanometer scale (diameter: 4–14 nm and length: 5–100 nm) of calcium‐deficient (Ca/P ratio ~1.53) needle‐like HA. Uniform dispersion of nEHA in soy protein isolate (SPI) solution was obtained by modifying nEHA surface using a polyelectrolyte (sodium polyacrylate) dispersant via irreversible adsorption. Green nanocomposite films were prepared from SPI and surface‐modified nEHA with the help of a natural plasticizer “glycerol” by solution casting. Significant improvements in tensile modulus and strength were achieved owing to the inclusion of uniformly dispersed nEHA in SPI sheets. Overall, this work provides a green pathway of fabricating nanocomposites using naturally occurring renewable polymer and inorganic moieties from eggshell waste that emphasizes the possibilities for replacing some petroleum‐based polymers in packaging and other applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43477.  相似文献   

6.
纳米二氧化钛/腐植酸对泰乐菌素的吸附特性   总被引:1,自引:0,他引:1  
为了研究不同来源的腐植酸(HA)/纳米二氧化钛(nmTiO2)复合物对典型抗生素环境行为的影响,采用批量平衡振荡法,分别考察了吸附等温线、离子强度以及pH值对纳米二氧化钛/HA吸附泰乐菌素(TYL)的影响。结果表明:TYL在TiO2/不同来源的HA复合物上的吸附容量不同,顺序为,BZ/TiO2DC/TiO2NT/TiO2DN/TiO2,添加腐植酸后,吸附容量明显增加,离子交换可能是泰乐菌素在HA/TiO2复合物上吸附的主要机理;随着pH值的升高,吸附容量逐渐增大;而随着离子强度的增加,吸附容容量显示减小。这意味着纳米二氧化钛进入环境后,随着环境条件的改变,其对抗生素的吸附能力也将发生改变,进而对抗生素在水环境中的迁移造成影响。  相似文献   

7.
This paper reviews the kinetics of biodegradation of linear alkylbenzene sulfonate (LAS) in engineered (wastewater treatment) and natural environment systems, focusing on work conducted in our environmental laboratories over the past 10–15 yr. Biodegradation studies were conducted in laboratory microcosms in which pure-chainlength [14C]-ring-labeled LAS homologs were used to allow complete mineralization to be assessed. In general, biodegradation rates for a series of LAS homologs (C10–C14) were comparable to each other and to values for naturally occurring materials such as sugars and fatty acids. Half-lives for LAS mineralization ranged from 1–2 d in aerobic and anaerobic sewage sludges, river water and sediments, to 1–3 wk in surface and subsurface soils and estuarine environments. The half-life for LAS degradation in different environmental compartments, relative to its residence time in these compartments, makes biodegradation a practically significant removal mechanism in a broad range of aquatic, benthic and terrestrial habitats.  相似文献   

8.
Decaying alder leaves in water from Alpine Aedes breeding sites, particularly their toxicity to larval Culicidae, were investigated and characterized with comparative toxicological and chemical methods. Bioassays that used third-instar Aedes aegypti as a reference species indicated that the larvicidal effect of crude leaf litter varied with decaying age of the litter, while no toxicity was detected from leaching water of the mosquito breeding sites. Ten-month-old leaf litter was the most toxic. Comparison of the different soluble and insoluble fractions obtained after sequential extraction of decomposed litter allowed us to localize the toxicity factor to an insoluble cell-wall fraction. The toxicity seems to be linked to phenolic activity. It is higher than that found for tannic acid solutions used as a reference to mimic the larvicidal effects of the molecules naturally occurring in decaying litter. The pattern of establishing the larvicidal effect of alder leaf litter in water of Alpine Aedes breeding sites is discussed.  相似文献   

9.
《Ceramics International》2020,46(12):20328-20334
Superhydrophobicity is evolutionarily adaptive to surrounding environment. Lotus flower is naturally occurring superhydrophobicity. Artificial self-cleaning materials function effectively on superhydrophobic surfaces so that water droplets bead up and roll off the surface taking the contamination particles away. Inspired by lotus flower, we have fabricated superhydrophobic Mg alloy surfaces using manganese dioxide (MnO2) microspheres encased in stearic acid shells. The prepared superhydrophobic Mg alloy surface provides exceptional self-cleaning ability in air and oil, and remains non-wetting even after dynamic water shear, or exposure to strong acid, strong base, and saline solutions as well as organic solvents showing excellent mechanochemical durability, with broad application prospect.  相似文献   

10.
Hydrogels, based on hyaluronic acid or hyaluronan (HA), are gaining attention as possible cell‐scaffolding materials for the regeneration of a variety of tissues. This article describes how HA, a naturally occurring polymer, has been crosslinked to reduce its degradation rate and freeze dried to produce porous materials suitable for tissue engineering. The resulting pore architecture has been assessed as a function of freezing temperature and freezing rate, type of crosslinkers, and methods used in the crosslinking process. On comparing the average densities of crosslinked and uncrosslinked scaffolds, it is apparent that the chemical modification increases sponge density and wall thickness of the pores while decreasing the pore size. The mechanical response of the modified materials has been investigated by equilibrium‐swelling measurements and compression tests. These materials have an average pore size ranging from 167 to 215 μm, which suggests that they would be a suitable temporary site for cell proliferation. The materials exhibit moderate mechanical integrity and are expected to be capable of withstanding physiological stresses in vivo. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
A new conjugated trans,trans-diunsaturated acetylenic acid (17%), found for the first time in nature as a main component of the seed oil of Tanacetum (Chrysanthemum) corymbosum, was shown to be octadeca-8t,10t-dien-12-ynoic acid. Another already known naturally occurring acetylenic acid, crepenynic acid (10%), was found also in the seed oil. The structure of this new unusual fatty acid was confirmed by chromatographic (thin-layer chromatography, gas chromatography, high-performance liquid chromatography) and spectroscopic (infrared, ultraviolet, mass spectrometry) methods by using different chemical derivatizations (deuteration, preparation of picolinyl ester, dimethyloxazoline, and maleic anhydride adduct).  相似文献   

12.
Ototoxic hearing loss due to antibiotic medication including aminoglycosides and excess free radical production causes irreversible hair cell injury. Cichoric acid, a naturally occurring phenolic acid, has recently been found to exert anti-oxidative and anti-inflammatory properties through its free radical scavenging capacity. The present study aimed to investigate the protective effects of cichoric acid against neomycin-induced ototoxicity using transgenic zebrafish (pvalb3b: TagGFP). Our results indicated that cichoric acid in concentrations up to 5 μM did not affect zebrafish viability during the 2 h treatment period. Therefore, the otoprotective concentration of cichoric acid was identified as 5 μM under 2 h treatment by counting viable hair cells within the neuromasts of the anterior- and posterior-lateral lines in the study. Pretreatment of transgenic zebrafish with 5 μM of cichoric acid for 2 h significantly protected against neomycin-induced hair cell death. Protection mediated by cichoric acid was, however, lost over time. A terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and FM4-64 staining, respectively, provided in situ evidence that cichoric acid ameliorated apoptotic signals and mechanotransduction machinery impairment caused by neomycin. A fish locomotor test (distance move, velocity, and rotation frequency) assessing behavioral alteration after ototoxic damage revealed rescue due to cichoric acid pretreatment before neomycin exposure. These findings suggest that cichoric acid in 5 μM under 2 h treatment has antioxidant effects and can attenuate neomycin-induced hair cell death in neuromasts. Although cichoric acid offered otoprotection, there is only a small difference between pharmacological and toxic concentrations, and hence cichoric acid can be considered a rather prototypical compound for the development of safer otoprotective compounds.  相似文献   

13.
BACKGROUND: This research focuses on understanding the biosorption process and developing a cost‐effective technology for the treatment of water contaminated with phenolic compounds (phenol, 2‐chlorophenol and 4‐chlorophenol), which are discharged into the aquatic environment from a variety of sources and are highly toxic. In order to remove phenolic compounds from water, a new biobased sorbent is developed, blending chitosan with abrus precatorius, both naturally occurring biopolymers. The resulting chitosan–abrus precatorius blended beads (CS/Ab) were characterized by Brunauer, Emmett and Teller (BET) analysis, Fourier Transform Infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) techniques under batch equilibrium and column flow experimental conditions. The binding capacity of the biosorbent was investigated as a function of initial pH, contact time, initial concentration of adsorbate and dosage of adsorbent. RESULTS: The percentage removal of phenol, 2‐CP and 4‐CP increased with increasing adsorbent dose, while the adsorption capacity at equilibrium, qe (mg g?1) (amount of phenol, 2‐CP and 4‐CP loaded per unit weight of adsorbent) decreased. The equilibrium time was found to be 240 min for full equilibration of all adsorbates. Adsorption kinetic and isotherm studies showed that the pseudo‐first‐order model and the Langmuir isotherm were the best choices to describe the adsorption behaviors. The maximum monolayer adsorption capacity of phenol, 2‐CP and 4‐CP on to the (CS/Ab) beads was found to be 156 mg g?1, 204 mg g?1 and 278 mg g?1, respectively. CONCLUSION: The experimental results suggested that (CS/Ab) blended beads are effective in the removal of phenolic compounds from aqueous medium. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
Invasive plant species can have significant ecological and economic impacts. Although numerous hypotheses highlight the importance of the chemical defenses of invasive plant species, the chemical ecology of many invasive plants has not yet been investigated. In this study, we provide the first quantitative investigation of variation in iridoid glycoside concentrations of the invasive plant Dalmatian toadflax (Linaria dalmatica). We examined variation in chemical defenses at three levels: (1) variation within and among populations; (2) variation due to phenology and/or seasonal differences; and (3) variation among plant parts (leaves, flowers, and stems). Further, we examined two biological control agents introduced to control L. dalmatica for the ability to sequester iridoid glycosides from this invasive plant. Results indicate that L. dalmatica plants can contain high concentrations of iridoid glycosides (up to 17.4% dry weight of leaves; mean = 6.28 ± 0.5 SE). We found significant variation in iridoid glycoside concentrations both within and among plant populations, over the course of the growing season, and among plant parts. We also found that one biological control agent, Calophasia lunula (Lepidoptera: Noctuidae), was capable of sequestering antirrhinoside, an iridoid glycoside found in L. dalmatica, at levels ranging from 2.7 to 7.5% dry weight. A second biological control agent, Mecinus janthinus (Coleoptera: Curculionidae), a stem-mining weevil, did not sequester iridoid glycosides. The demonstrated variation in L. dalmatica chemical defenses may have implications for understanding variation in the degree of invasiveness of different populations as well as variation in the efficacy of biological control efforts.  相似文献   

15.
除草剂的大量、不合理使用对水体造成了严重污染,威胁水生生物的生存及人类健康。不少研究者开始对除草剂生态环境风险评估进行研究。斑马鱼因其自身独特的优势而已成为国际公认的模式脊椎动物之一,是污染物风险评估选用的绝佳材料之一。对斑马鱼在风险评估中的地位、除草剂对斑马鱼及其胚胎的毒性与富集进行了综述。  相似文献   

16.
Molecular and physiological analyses in ionoregulatory organs (e.g., adult gills and embryonic skin) are essential for studying fish ion regulation. Recent progress in the molecular physiology of fish ion regulation was mostly obtained in embryonic skin; however, studies of ion regulation in adult gills are still elusive and limited because there are no direct methods for in vivo functional assays in the gills. The present study applied the scanning ion-selective electrode technique (SIET) in adult gills to investigate branchial H+-excreting functions in vivo. We removed the opercula from zebrafish and then performed long-term acid acclimation experiments. The results of Western blot and immunofluorescence showed that the protein expression of H+-ATPase (HA) and the number of H+-ATPase-rich ionocytes were increased under acidic situations. The SIET results proved that the H+ excretion capacity is indeed enhanced in the gills acclimated to acidic water. In addition, both HA and Na+/H+ exchanger (Nhe) inhibitors suppressed the branchial H+ excretion capacity, suggesting that H+ is excreted in association with HA and Nhe in zebrafish gills. These results demonstrate that SIET is effective for in vivo detection in fish gills, representing a breakthrough approach for studying the molecular physiology of fish ion regulation.  相似文献   

17.
Benzophenone-2 (BP-2) is an important type of UV filter that has been widely used and detected in the aquatic environment with greater estrogenic toxicity. In our work, the removal of BP-2 with the initial concentration of 25 mg L?1 was first carried out by ozone at different pH (ranging from pH 3.0 to 11.0), and we found a positive correlation between the pH values and the degradation efficiency of BP-2, among which the more rapid removal of BP-2 in alkaline condition was observed than acidic and neutral conditions. For the influence of aqueous humic acid (HA, the concentration ranged from 0 ppm to 100 ppm), the degradation rate of BP-2 by ozonation was first increased with the growth of humic acid concentration (from 0 ppm to 5 ppm), reaching to maximum at 5 ppm of HA and subsequently decreased with the growth of HA concentration (from 5 ppm to 100 ppm). Fourteen intermediate products in the ozonation process were distinguished by an electrospray time-of-flight mass spectrometer and then two degradation pathways were proposed. Through the theoretical calculation, we found the carbanyl group of BP-2 has the most reactivity to be easily attacked by ozone, providing us guides and theoretical basis on the supposed intermediate products. Furthermore, the P. phosphoreum acute toxicity test was conducted to evaluate the potential toxicity during the ozonation process.  相似文献   

18.
Betula pubescens bud flavonoid aglycones reportedly have negative effects on the performance of first instar Epirrita autumnata and, thus, may defend birch leaves from larval defoliation. We hypothesized that the detrimental effects of these lipophilic flavonoids on larvae are due to their high levels in birch buds and/or the inability of naïve neonates to glycosylate them, which we have shown to occur in fifth instars. To test the latter hypothesis, we investigated the biochemical transformation of bud flavonoids in first instar E. autumnata. We found that newly hatched larvae have the ability to glycosylate birch bud/leaf flavonoid aglycones into corresponding glycosides. Moreover, we suggest that glycosylation may depend upon the chemical character of the aglycone and is an important factor in the performance of first instars.  相似文献   

19.
Lichens produce a great number of secondary metabolites that participate in ecological interactions and respond to environmental changes. We examined the influence of heavy metal accumulations on lichen secondary metabolism. Thalli of Hypogymnia physodes were transplanted for 6 months to the Cracow–Silesia industrial region. Based on heavy metal accumulations in lichen, two of the investigated sites were classified as highly polluted. The highest concentrations of Cd, Pb, and Zn were found in lichens transplanted in the vicinity of a Zn–Pb smelter. Significant accumulations of Cr and Ni were detected in Hypogymnia transplanted near a chemical industry. Physodic, physodalic, hydroxyphysodic acids, and atranorin were identified and analyzed in extracts obtained from specimen samples. The most detrimental changes were observed in lichen transplanted into the vicinity of a chemical industry producing chromium, phosphor, and sulfur compounds that contained 340-fold higher Cr levels than control thalli. Decreases in the levels of physodic acid, hydroxyphysodic acid, and atranorin were detected, and one additional polar compound (probably product of degradation of lichen acids) appeared in the extract. The content of physodalic acid increased in every thalli sample transplanted, suggesting a possible role of this compound in defense against stress caused by accumulated pollutants. The levels of physodic acid decreased in thalli from both of the most polluted sites compared to those of the controls—but were not changed in thalli transplanted to less polluted sites. Our results illustrate that lichen compounds are sensitive to heavy metal accumulation and could be used as biomarkers in environmental studies.  相似文献   

20.
BACKGROUND: Trichloroethylene (TCE) and perchloroethylene (PCE) are considered among the most important groundwater pollutants around the world. These compounds are usually found together in polluted environments but little is known about the ability of microorganisms to simultaneously degrade TCE and PCE. RESULTS: Data showed that several species of white‐rot fungi, including Trametes versicolor, Ganoderma lucidum, and Irpex lacteus, degrade substantial levels of TCE in pure culture. T. versicolor was chosen for further study since it degraded higher levels of TCE than the other organisms. Initial glucose concentration and reoxygenation of samples increased the amount of TCE dechlorination, but no significant difference in percentage TCE degradation was observed. T. versicolor was able to degrade 34.1 and 47.7% of PCE and TCE added as mixtures (containing 5 and 10 mg L−1, respectively). CONCLUSIONS: The degradation ability of TCE was extended to other species of white‐rot fungi. Percentage degradation as well as chloride release from mixtures of TCE and PCE showed that T. versicolor degrades mixtures of TCE and PCE almost as well as its ability to degrade individually added TCE or PCE. The results suggest the potential promise of T. versicolor for bioremediation of TCE and PCE in the environment. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号