首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of Clostridium perfringens spore germination and outgrowth by carvacrol, cinnamaldehyde, thymol, and oregano oil was evaluated during abusive chilling of cooked ground beef (75% lean) obtained from a local grocery store. Test substances were mixed into thawed ground beef at concentrations of 0.1, 0.5, 1.0, or 2.0% (wt/wt) along with a heat-activated three-strain C. perfringens spore cocktail to obtain final spore concentrations of ca. 2.8 log spores per g. Aliquots (5 g) of the ground beef mixtures were vacuum-packaged and then cooked in a water bath, the temperature of which was raised to 60 degrees C in 1 h. The products were cooled from 54.4 to 7.2 degrees C in 12, 15, 18, or 21 h, resulting in 3.18, 4.64, 4.76, and 5.04 log CFU/ g increases, respectively, in C. perfringens populations. Incorporation of test compounds (> or = 0.1%) into the beef completely inhibited C. perfringens spore germination and outgrowth (P < or = 0.05) during exponential cooling of the cooked beef in 12 h. Longer chilling times (15, 18, and 21 h) required greater concentrations to inhibit spore germination and outgrowth. Cinnamaldehyde was significantly (P < 0.05) more effective (< 1.0 log CFU/g growth) at a lower concentration (0.5%) at the most abusive chilling rate evaluated (21 h) than the other compounds. Incorporation of lower levels of these test compounds with other antimicrobials used in meat product formulations may reduce the potential risk of C. perfringens germination and outgrowth during abusive cooling regimes.  相似文献   

2.
ABSTRACT:  We investigated the inhibition of Clostridium perfringens spore germination and outgrowth by the biopolymer chitosan during abusive chilling of cooked ground beef (25% fat) and turkey (7% fat) obtained from a retail store. Chitosan was mixed into the thawed beef or turkey at concentrations of 0.5%, 1.0%, 2.0%, or 3.0% (w/w) along with a heat-activated 3-strain spore cocktail to obtain a final spore concentration of 2 to 3 log10 CFU/g. Samples (5 g) of the ground beef or turkey mixtures were then vacuum-packaged and cooked to 60 °C in 1 h in a temperature-controlled water bath. Thereafter, the products were cooled from 54.4 to 7.2 °C in 12, 15, 18, or 21 h, resulting in 4.21, 4.51, 5.03, and 4.70 log10 CFU/g increases, respectively, in C. perfringens populations in the ground beef control samples without chitosan. The corresponding increases for ground turkey were 5.27, 4.52, 5.11, and 5.38 log10 CFU/g. Addition of chitosan to beef or turkey resulted in concentration- and time-dependent inhibition in the C. perfringens spore germination and outgrowth. At 3%, chitosan reduced by 4 to 5 log10 CFU/g C. perfringens spore germination and outgrowth ( P ≤ 0.05) during exponential cooling of the cooked beef or turkey in 12, 15, or 18 h. The reduction was significantly lower ( P < 0.05) at a chilling time of 21 h, about 2 log10 CFU/g, that is, 7.56 log10 CFU/g (unsupplemented) compared with 5.59 log10 CFU/g (3% chitosan). The results suggest that incorporation of 3% chitosan into ground beef or turkey may reduce the potential risk of C. perfringens spore germination and outgrowth during abusive cooling from 54.4 to 7.2 °C in 12, 15, or 18 h.  相似文献   

3.
Inhibition of Clostridium perfringens germination and outgrowth by salts of organic acids such as sodium lactate, sodium acetate, buffered sodium citrate and buffered sodium citrate supplemented with sodium diacetate was evaluated during continuous chilling of ground turkey. Turkey breast meat was injected with a brine-containing NaCl, potato starch and potassium tetra pyrophosphate to yield final in-product concentrations of 0.85%, 0.25% and 0.20%, respectively. The meat was ground, mixed with either sodium lactate (1%, 2%, 3% or 4%), sodium acetate (1% or 2%), buffered sodium citrate (Ional, 1%) or buffered sodium citrate supplemented with sodium diacetate (Ional Plus trade mark, 1%), in addition to a control that did not contain added antimicrobials. Each product was mixed with a three-strain C. perfringens spore cocktail to obtain final spore concentrations of ca. 2.8 log10 spores/g. Inoculated products (10 g) were packaged into cook-in-bags (2 x 3 in.), vacuum sealed, cooked at 60 degrees C for 1 h, and subsequently chilled from 54.4 to 7.2 degrees C in 15, 18 and 21 h following exponential chilling rates. Products were sampled immediately after cooking and then after chilling. Chilling of cooked turkey following 15, 18 and 21 h chill rates resulted in germination and outgrowth of C. perfringens spores to 6.6, 7.58 and 7.95 log10 CFU/g populations, respectively, from initial spore populations of ca. 2.80 log10 CFU/g. Incorporation of sodium lactate (1%), sodium acetate (1%), Ional or Ional Plus (1%) substantially inhibited germination and outgrowth of C. perfringens spores compared to controls. Final C. perfringens total populations of 3.12, 3.10, 2.38 and 2.92 log10 CFU/g, respectively, were observed following a 15-h exponential chill rate. Similar inhibitory effects were observed for 18 and 21 chill rates with the antimicrobials at 1% concentrations. While sodium lactate and sodium acetate concentrations of 1% were sufficient to control C. perfringens germination and outgrowth (<1.0 log10 CFU/g growth) following 15 h chill rates, higher concentrations were required for 18 and 21 h chill rates. Ional at 1% concentration was effective in inhibiting germination and outgrowth to <1.0 log10 CFU/g of C. perfringens for all three chill rates (15, 18 and 21 h) tested. Use of sodium salts of organic acids in formulation of ready-to-eat meat products can reduce the risk of C. perfringens spore germination and outgrowth during chilling.  相似文献   

4.
Inhibition of Clostridium perfringens spore germination and outgrowth by lactic acid salts (calcium, potassium, and sodium) during exponential cooling of injected turkey product was evaluated. Injected turkey samples containing calcium lactate, potassium lactate, or sodium lactate (1.0, 2.0, 3.0, or 4.8% [w/w]), along with a control (product without lactate), were inoculated with a three-strain cocktail of C. perfringens spores to achieve a final spore population of 2.5 to 3.0 log CFU/g. The inoculated product was heat treated and exponentially cooled from 54.5 to 7.2 degrees C within 21, 18, 15, 12, 9, or 6.5 h. Cooling of injected turkey (containing no antimicrobials) resulted in C. perfringens germination and an outgrowth of 0.5, 2.4, 3.4, 5.1, 5.8, and 5.8 log CFU/g when exponentially cooled from 54.4 to 7.2 degrees C in 6.5, 12, 15, 18, and 21 h, respectively. The incorporation of antimicrobials (lactates), regardless of the type (Ca, Na, or K salts), inhibited the germination and outgrowth of C. perfringens spores at all the concentrations evaluated (1.0, 2.0, 3.0, and 4.8%) compared to the injected turkey without acetate (control). Increasing the concentrations of the antimicrobials resulted in a greater inhibition of the spore germination and outgrowth in the products. In general, calcium lactate was more effective in inhibiting the germination and outgrowth of C. perfringens spores at > or = 1.0% concentration than were sodium and potassium lactates. Incorporation of these antimicrobials in cooked, ready-to-eat turkey products can provide additionalprotection in controlling the germination and outgrowth of C. perfringens spores during cooling (stabilization).  相似文献   

5.
Spores of foodborne pathogens can survive traditional thermal processing schedules used in the manufacturing of processed meat products. Heat-activated spores can germinate and grow to hazardous levels when these products are improperly chilled. Germination and outgrowth of Clostridium perfringens spores in roast beef during chilling was studied following simulated cooling schedules normally used in the processed-meat industry. Inhibitory effects of organic acid salts on germination and outgrowth of C. perfringens spores during chilling and the survival of vegetative cells and spores under abusive refrigerated storage was also evaluated. Beef top rounds were formulated to contain a marinade (finished product concentrations: 1% salt, 0.2% potassium tetrapyrophosphate, and 0.2% starch) and then ground and mixed with antimicrobials (sodium lactate and sodium lactate plus 2.5% sodium diacetate and buffered sodium citrate and buffered sodium citrate plus 1.3% sodium diacetate). The ground product was inoculated with a three-strain cocktail of C. perfringens spores (NCTC 8238, NCTC 8239, and ATCC 10388), mixed, vacuum packaged, heat shocked for 20 min at 75 degrees C, and chilled exponentially from 54.5 to 7.2 degrees C in 9, 12, 15, 18, or 21 h. C. perfringens populations (total and spore) were enumerated after heat shock, during chilling, and during storage for up to 60 days at 10 degrees C using tryptose-sulfite-cycloserine agar. C. perfringens spores were able to germinate and grow in roast beef (control, without any antimicrobials) from an initial population of ca. 3.1 log CFU/g by 2.00, 3.44, 4.04, 4.86, and 5.72 log CFU/g after 9, 12, 15, 18, and 21 h of exponential chilling. A predictive model was developed to describe sigmoidal C. perfringens growth curves during cooling of roast beef from 54.5 to 7.2 degrees C within 9, 12, 15, 18, and 21 h. Addition of antimicrobials prevented germination and outgrowth of C. perfringens regardless of the chill times. C. perfringens spores could be recovered from samples containing organic acid salts that were stored up to 60 days at 10 degrees C. Extension of chilling time to > or =9 h resulted in >1 log CFU/g growth of C. perfringens under anaerobic conditions in roast beef. Organic acid salts inhibited outgrowth of C. perfringens spores during chilling of roast beef when extended chill rates were followed. Although C. perfringens spore germination is inhibited by the antimicrobials, this inhibition may represent a hazard when such products are incorporated into new products, such as soups and chili, that do not contain these antimicrobials, thus allowing spore germination and outgrowth under conditions of temperature abuse.  相似文献   

6.
We investigated the inhibition of Clostridium perfringens spore germination and outgrowth by two green tea extracts with low (green tea leaf powder [GTL]; 141 mg of total catechins per g of green tea extract) and high (green tea leaf extract [GTE]; 697 mg of total catechins per g of extract) catechin levels during abusive chilling of retail cooked ground beef, chicken, and pork. Green tea extracts were mixed into the thawed beef, chicken, and pork at concentrations of 0.5, 1.0, and 2.0% (wt/ wt), along with a heat-activated (75 degrees C for 20 min) three-strain spore cocktail to obtain a final concentration of approximately 3 log spores per g. Samples (5 g) of the ground beef, chicken, and pork were then vacuum packaged and cooked to 71 degrees C for 1 h in a temperature-controlled water bath. Thereafter, the products were cooled from 54.4 to 7.2 degrees C in 12, 15, 18, or 21 h, resulting in significant increases (P < 0.05) in the germination and outgrowth of C. perfringens populations in the ground beef, chicken, and pork control samples without GTL or GTE. Supplementation with 0.5 to 2% levels of GTL did not inhibit C. perfringens growth from spores. In contrast, the addition of 0.5 to 2% levels of GTE to beef, chicken, and pork resulted in a concentration-and time-dependent inhibition of C. perfringens growth from spores. At a 2% level of GTE, a significant (P < 0.05) inhibition of growth occurred at all chill rates for cooked ground beef, chicken, and pork. These results suggest that widely consumed catechins from green tea can reduce the potential risk of C. perfringens spore germination and outgrowth during abusive cooling from 54.4 to 7.2 degrees C in 12, 15, 18, or 21 h of cooling for ground beef, chicken, and pork.  相似文献   

7.
Inhibition of the germination and outgrowth of Clostridium perfringens by buffered sodium citrate (Ional) and buffered sodium citrate supplemented with sodium diacetate (Ional Plus) during the abusive chilling of roast beef and injected pork was evaluated. Beef top rounds or pork loins were injected with a brine containing NaCl, potato starch, and potassium tetrapyrophosphate to yield final in-product concentrations of 0.85, 0.25, and 0.20%, respectively. Products were ground and mixed with Ional or Ional Plus at 0, 0.5, 1.0, and 2.0%. Each product was mixed with a three-strain C. perfringens spore cocktail to obtain final spore concentrations of ca. 2.5 log10 spores per g. Chilling of roast beef from 54.4 to 7.2 degrees C resulted in C. perfringens population increases of 1.51 and 5.27 log10 CFU/g for 18- and 21-h exponential chill rates, respectively, while chilling of injected pork resulted in increases of 3.70 and 4.41 log10 CFU/g. The incorporation of Ional into the roast beef formulation resulted in C. perfringens population reductions of 0.98, 1.87, and 2.47 log10 CFU/g with 0.5, 1.0, and 2.0% Ional, respectively, over 18 h of chilling, while > or = 1.0% Ional Plus was required to achieve similar reductions (reductions of 0.91 and 2.07 log10 CFU/g were obtained with 1.0 and 2.0% Ional Plus, respectively). An Ional or Ional Plus concentration of > or = 1.0% was required to reduce C. perfringens populations in roast beef or injected pork chilled from 54.4 to 7.2 degrees C in 21 h. Cooling times for roast beef or injected pork products after heat processing can be extended to 21 h through the incorporation of > or = 1.0% Ional or Ional Plus into the formulation to reduce the potential risk of C. perfringens germination and outgrowth.  相似文献   

8.
Inhibition of Clostridium perfringens spore germination and outgrowth during abusive chilling regimes was investigated by the incorporation of lactates of calcium (CaL), potassium (KL) and sodium (NaL) in injected pork. Lactates (Ca, K, or Na) were incorporated into injected pork samples at four different concentrations (1.0%, 2.0%, 3.0%, and 4.8%), along with a no-lactate control. A three-strain cocktail of C. perfringens spores was inoculated into the product (injected pork) to obtain a final spore population of ca. 2.0-2.5 log(10)CFU/g. Chilling of injected pork (control) from 54.4 to 7.2 degrees C within 6.5, 9, 12, 15, 18, and 21 h exponential chill rates resulted in C. perfringens population increases of 0.49, 2.40, 4.02, 5.03, 6.24, and 6.30 log(10)CFU/g, respectively. Addition of CaL at 1.0% or KL and NaL > or = 2.0% to injected pork was able to control C. perfringens germination and outgrowth to <1 logCFU/g, meeting the USDA-FSIS performance standard. However, extension of chilling rates beyond 9.0 h (up to 21 h) required addition of CaL ( > or = 2.0%), KL or NaL ( > or = 3.0%) to meet the stabilization performance standard. In general, CaL was more effective compared to KL or NaL for all the chilling regimes, in reducing the potential risk of C. perfringens germination and outgrowth.  相似文献   

9.
Control of Clostridium perfringens germination and outgrowth by the following salts of organic acids, sodium lactate [Purasal?S/SP (Purasal); 1.50, 3.00 and 4.80%], sodium lactate supplemented with sodium diacetate [Purasal? Opti.form? (Optiform), 1.50, 3.00 and 4.80%], buffered sodium citrate [Ional? (Ional), 0.75, 1.00 and 1.30]) and buffered sodium citrate supplemented with sodium diacetate [Ional Plus? (Ional Plus), 0.75, 1.00 and 1.30%] was evaluated during continuous chilling of a model roast beef product. Beef rounds were ground through an 1/8′’ plate and NaCl, potato starch and potassium tetra pyrophosphate were added to final concentrations of 0.85, 0.25 and 0.20%, respectively, and mixed. Portions (250 g) of the meat were mixed with either Purasal (1.5, 3.0 or 4.8%), Optiform (1.5, 3.0 or 4.8%), Ional (0.75, 1.0 or 1.3%) or Ional Plus (0.75, 1.0 or 1.3%) along with a control that did not have any added antimicrobials. Each product (10 g) inoculated with C. perfringens spores (ca. 2.2 log10 spores/g) was packaged into vacuum bags (2 in. × 3 in.), vacuum sealed, heated to 60C within 1 h, and subsequently chilled from 54.4C to 7.2C in 18 or 21 h following exponential chilling rates. Products were sampled immediately after cooking to enumerate the C. perfringens populations (spores surviving heat treatment) and subsequent to chilling (total C. perfringens populations, including spores and vegetative cells resulting from germination and outgrowth of the spores). Chilling of cooked, model ground roast beef resulted in germination and outgrowth of C. perfringens spores; the population densities increased by 4.13 and 4.40 log10 CFU/g, following 18 and 21 h chill rates, respectively. Incorporation of Purasal (1.5–4.8%), Optiform (1.5–4.8%), Ional and Ional Plus (0.75–1.3%) substantially (P ± 0.05) inhibited germination and outgrowth of C. perfringens spores. Incorporation of antimicrobial ingredients resulted in ± 1.0 log10 CFU/g increase of the pathogen, except for model roast beef with Ional Plus at 0.75% concentration, following 18 h chilling rate. Similar results were obtained when 21 h chilling rate was followed, with roast beef containing ingredients (at all the concentrations) resulting in either reductions or ± 1.0 log10 CFU/g growth in total C. perfringens populations, except for Purasal and Ional Plus at 1.5 and 0.75% concentrations, respectively. Use of sodium salts of organic acids in formulation of model roast beef can reduce the risk of C. perfringens spore germination and outgrowth during extended chilling rates.  相似文献   

10.
In January 1999, the Food Safety and Inspection Service (FSIS) finalized performance standards for the cooking and chilling of meat and poultry products in federally inspected establishments. More restrictive chilling (stabilization) requirements were adopted despite the lack of strong evidence of a public health risk posed by industry practices employing the original May 1988 guidelines (U.S. Department of Agriculture FSIS Directive 7110.3). Baseline data led the FSIS to estimate a "worst case" of 10(4) Clostridium perfringens cells per g in raw meat products. The rationale for the FSIS performance standards was based on this estimate and the assumption that the numbers detected in the baseline study were spores that could survive cooking. The assumptions underlying the regulation stimulated work in our laboratory to help address why there have been so few documented outbreaks of C. perfringens illness associated with the consumption of commercially processed cooked meat and poultry products. Our research took into account the numbers of C. perfringens spores in both raw and cooked products. One hundred ninety-seven raw comminuted meat samples were cooked to 73.9 degrees C and analyzed for C. perfringens levels. All but two samples had undetectable levels (<3 spores per g). Two ground pork samples contained 3.3 and 66 spores per g. Research was also conducted to determine the effect of chilling on the outgrowth of C. perfringens spores in cured and uncured turkey. Raw meat blends inoculated with C. perfringens spores, cooked to 73.9 degrees C, and chilled according to current guidelines or under abuse conditions yielded increases of 2.25 and 2.44 log10 CFU/g for uncured turkey chilled for 6 h and an increase of 3.07 log10 CFU/g for cured turkey chilled for 24 h. No growth occurred in cured turkey during a 6-h cooling period. Furthermore, the fate of C. perfringens in cooked cured and uncured turkey held at refrigeration temperatures was investigated. C. perfringens levels decreased by 2.52, 2.54, and 2.75 log10 CFU/g in cured turkey held at 0.6, 4.4, and 10 degrees C, respectively, for 7 days. Finally, 48 production lots of ready-to-eat meat products that had deviated from FSIS guidelines were analyzed for C. perfringens levels. To date, 456 samples have been tested, and all but 25 (ranging from 100 to 710 CFU/g) of the samples contained C. perfringens at levels of <100 CFU/g. These results further support historical food safety data that suggest a very low public health risk associated with C. perfringens in commercially processed ready-to-eat meat and poultry products.  相似文献   

11.
The effect of heating rate on the heat resistance, germination, and outgrowth of Clostridium perfringens spores during cooking of cured ground pork was investigated. Inoculated cured ground pork portions were heated from 20 to 75°C at a rate of 4, 8, or 12°C/h and then held at 75°C for 48 h. No significant differences (P > 0.05) in the heat resistance of C. perfringens spores were observed in cured ground pork heated at 4, 8, or 12°C/h. At heating rates of 8 and 12°C/h, no significant differences in the germination and outgrowth of spores were observed (P > 0.05). However, when pork was heated at 4°C/h, growth of C. perfringens occurred when the temperature of the product was between 44 and 56°C. In another set of experiments, the behavior of C. perfringens spores under temperature abuse conditions was studied in cured and noncured ground pork heated at 4°C/h and then cooled from 54.4 to 7.2°C within 20 h. Temperature abuse during cooling of noncured ground pork resulted in a 2.8-log CFU/g increase in C. perfringens. In cured ground pork, C. perfringens decreased by 1.1 log CFU/g during cooling from 54.4 to 36.3°C and then increased by 0.9 log CFU/g until the product reached 7.2°C. Even when the initial level of C. perfringens spores in cured ground pork was 5 log CFU/g, the final counts after abusive cooling did not exceed 3.4 log CFU/g. These results suggest that there is no risk associated with C. perfringens in cured pork products under the tested conditions.  相似文献   

12.
Clostridium perfringens spore destruction, aerobic plate counts (APCs), and counts of Enterobacteriaceae, coliforms, and Escherichia coli during baking of sambusa (a traditional Tajik food) were evaluated. Control of germination and outgrowth of C. perfringens spores in sambusa during cooling at room or refrigerated temperatures was evaluated using organic acid salts (buffered sodium citrate [Ional] and 1 and 2% potassium lactate, wt/wt). Sambusa were prepared with 40 g of either inoculated or noninoculated meat and baked for 45 min at 180 degrees C. For evaluation of destruction of C. perfringens spores during heating and germination and outgrowth of spores during cooling, ground beef was inoculated and mixed with a three-strain cocktail of C. perfringens spores. Aerobic bacteria, Enterobacteriaceae, coliforms, and E. coli were enumerated in noninoculated sambusa before and after baking and after cooling at room or refrigeration temperatures. After baking, APCs and Enterobacteriaceae and coliform counts were reduced by 4.32, 2.55, and 1.96 log CFU/g, respectively. E. coli counts were below detectable levels in ground beef and sambusa samples. Enterobacteriaceae, coliform, and E. coli counts were below detectable levels (< 0.04 log CFU/g) in sambusa after cooling by both methods. Total C. perfringens populations increased (4.67 log CFU/g) during cooling at room temperature, but minimal increases (0.31 log CFU/g) were observed during cooling under refrigeration. Incorporation of 2% (wt/wt) buffered sodium citrate controlled C. perfringens spore germination and outgrowth (0.25 log CFU/g), whereas incorporation of up to 2% (wt/wt) potassium lactate did not prevent C. perfringens spore germination and outgrowth. Incorporation of organic acid salts at appropriate concentrations can prevent germination and outgrowth of C. perfringens in improperly cooled sambusa.  相似文献   

13.
The effect of NaCl concentration and cooling rate on the ability of Clostridium perfringens to grow from spore inocula was studied with the use of a process that simulates the industrial cooking and cooling of smoked boneless ham and beef roasts. NaCl was added to ground cooked hams A and B (which were commercially obtained) to obtain levels of 2.4, 3.1, 3.6, and 4.1% (wt/wt) and 2.8, 3.3, 3.8, and 4.3% (wt/wt), respectively, and to raw ground beef to obtain levels of 0, 1, 2, 3, and 4% (wt/wt). Ham C, a specially formulated, commercially prepared product, was supplemented with NaCl to obtain levels of 2.0, 2.5, 3.0, and 3.5%. The samples were inoculated with a three-strain mixture of C. perfringens spores to obtain concentrations of ca. 3 log10 CFU/g. Portions of meat (5 g each) were spread into thin layers (1 to 2 mm) in plastic bags, vacuum packaged, and stored at -40 degrees C. Thawed samples were heated at 75 degrees C for 20 min and subsequently cooled in a programmed water bath from 54.4 to < or = 8.5 degrees C in 15, 18, or 21 h. For the enumeration of C. perfringens, samples were plated on tryptose-sulfite-cycloserine agar and incubated in an anaerobic chamber at 37 degrees C for 48 h. Population densities for cooked ham and beef increased as cooling time increased, and NaCl exerted a strong inhibitory effect on the germination and outgrowth of C. perfringens. For beef, while 3% NaCl completely arrested growth, pathogen numbers increased by > or = 3, 5, and 5 log10 CFU/g in 15, 18, and 21 h, respectively, when the NaCl level was <2%. C. perfringens did not grow during cooling for 15, 18, or 21 h in ham samples containing > or = 3.1% NaCl. Results obtained in this study suggest that a 15-h cooling time for cooked ham, which is normally formulated to contain >2% NaCl, would yield an acceptable product (with an increase of <1 log10 CFU/g in the C. perfringens count); however, for beef containing <2% NaCl, C. perfringens populations may reach levels high enough to cause illness.  相似文献   

14.
Abstract: Inhibition of Clostridium perfringens spore germination and outgrowth in reduced sodium roast beef by a blend of buffered lemon juice concentrate and vinegar (MoStatin LV1) during abusive exponential cooling was evaluated. Roast beef containing salt (NaCl; 1%, 1.5%, or 2%, w/w), blend of sodium pyro‐ and poly‐phosphates (0.3%), and MoStatin LV1 (0%, 2%, or 2.5%) was inoculated with a 3‐strain C. perfringens spore cocktail to achieve final spore population of 2.5 to 3.0 log CFU/g. The inoculated products were heat treated and cooled exponentially from 54.4 to 4.4 °C within 6.5, 9, 12, 15, 18, or 21 h. Cooling of roast beef (2.0% NaCl) within 6.5 and 9 h resulted in <1.0 log CFU/g increase in C. perfringens spore germination and outgrowth, whereas reducing the salt concentration to 1.5% and 1.0% resulted in >1.0 log CFU/g increase for cooling times longer than 9 h (1.1 and 2.2 log CFU/g, respectively). Incorporation of MoStatin LV1 into the roast beef formulation minimized the C. perfringens spore germination and outgrowth to <1.0 log CFU/g, regardless of the salt concentration and the cooling time. Practical Application: Cooked, ready‐to‐eat meat products should be cooled rapidly to reduce the risk of Clostridium perfringens spore germination and outgrowth. Meat processors are reducing the sodium chloride content of the processed meats as a consequence of the dietary recommendations. Sodium chloride reduces the risk of C. perfringens spore germination and outgrowth in meat products. Antimicrobials that contribute minimally to the sodium content of the product should be incorporated into processed meats to assure food safety. Buffered lemon juice and vinegar can be incorporated into meat product formulations to reduce the risk of C. perfringens spore germination and outgrowth during abusive cooling.  相似文献   

15.
Proper temperature control is essential in preventing Clostridium perfringens food poisoning. The U.S. Department of Agriculture Food Safety and Inspection Service cooling guidelines offer two options for the cooling of meat products: follow a standard time-temperature schedule or validate that alternative cooling regimens result in no more than a 1-log CFU/g increase of C. perfringens and no growth of Clostridium botulinum. The latter option requires laboratory challenge studies to validate the efficacy of a given cooling process. Accordingly, the objective of this study was to investigate the role of several methodological variables that might be encountered during typical C. perfringens challenge studies. Variables studied included plastic bag type (Whirlpak or Spiral Biotech), sealing method (Multivac or FoodSaver), initial spore inoculum size (1 to approximately 3 log CFU/g), and growth environment (ground beef or Trypticase-peptone-glucose-yeast extract [TPGY] broth). The major factors that affected growth were sample bag type and growth environment. Samples incubated in Whirlpak bags showed significantly less growth than those incubated in Spiral Biotech bags, which was likely due to the former bag's greater oxygen permeability. C. perfringens spores showed shorter germination, outgrowth, and lag times and C. perfringens cells showed faster growth rates in ground beef compared with TPGY broth. No significant difference was observed between two different sealing methods. Initial spore inoculum levels in the range studied had no significant effect on final C. perfringens cell concentration.  相似文献   

16.
It is unclear how rapidly meat products, such as bacon, that have been heat treated but not fully cooked should be cooled to prevent the outgrowth of spore-forming bacterial pathogens and limit the growth of vegetative cells. Clostridium perfringens spores and vegetative cells and Staphylococcus aureus cells were inoculated into ground cured pork bellies with and without 1.25% liquid smoke. Bellies were subjected to the thermal profiles of industrial smoking to 48.9 degrees C (120 degrees F) and normal cooling of bacon (3 h) as well as a cooling phase of 15 h until the meat reached 7.2 degrees C (45 degrees F). A laboratory-scale bacon smoking and cooling operation was also performed. Under normal smoking and cooling thermal conditions, growth of C. perfringens in ground pork bellies was <1 log regardless of smoke. Increase of S. aureus was 2.38 log CFU/g but only 0.68 log CFU/g with smoke. When cooling spanned 15 h, both C. perfringens and S. aureus grew by a total of about 4 log. The addition of liquid smoke inhibited C. perfringens, but S. aureus still achieved a 3.97-log increase. Staphylococcal enterotoxins were detected in five of six samples cooled for 15 h without smoke but in none of the six samples of smoked bellies. In laboratory-scale smoking of whole belly pieces, initial C. perfringens populations of 2.23 +/- 0.25 log CFU/g were reduced during smoking to 0.99 +/- 0.50 log CFU/g and were 0.65 +/- 0.21 log CFU/g after 15 h of cooling. Populations of S. aureus were reduced from 2.00 +/- 0.74 to a final concentration of 0.74 +/- 0.53 log CFU/g after cooling. Contrary to findings in the ground pork belly system, the 15-h cooling of whole belly pieces did not permit growth of either pathogen. This study demonstrates that if smoked bacon is cooled from 48.9 to 7.2 degrees C (120 to 45 degrees F) within 15 h, a food safety hazard from either C. perfringens or S. aureus is not likely to occur.  相似文献   

17.
A total of 445 whole-muscle and ground or emulsified raw pork, beef, and chicken product mixtures acquired from industry sources were monitored over a 10-month period for vegetative and spore forms of Clostridium perfringens. Black colonies that formed on Shahidi-Ferguson perfringens (SFP) agar after 24 h at 37 degrees C were considered presumptive positive. Samples that were positive after a 15-min heat shock at 75 degrees C were considered presumptive positive for spores. Of 194 cured whole-muscle samples, 1.6% were positive; spores were not detected from those samples. Populations of vegetative cells did not exceed 1.70 log10 CFU/g and averaged 1.56 log10 CFU/g. Of 152 cured ground or emulsified samples, 48.7% were positive, and 5.3% were positive for spores. Populations of vegetative cells did not exceed 2.72 log10 CFU/g and averaged 1.98 log10 CFU/g; spores did not exceed 2.00 log10 CFU/g and averaged 1.56 log10 CFU/g. Raw bologna (70% chicken), chunked ham with emulsion, and whole-muscle ham product mixtures were inoculated with C. perfringens spores (ATCC 12916, ATCC 3624, FD1041, and two product isolates) to ca. 3.0 log10 CFU/g before being subjected either to thermal processes mimicking cooking and chilling regimes determined by in-plant temperature probing or to cooking and extended chilling regimes. Populations of C. perfringens were recovered on SFP from each product at the peak cook temperatures, at 54.4, 26.7, and 7.2 degrees C, and after up to 14 days of storage under vacuum at 4.4 degrees C. In each product, populations remained relatively unchanged during chilling from 54.4 to 7.2 degrees C and declined slightly during refrigerated storage. These findings indicate processed meat products cured with sodium nitrite are not at risk for the growth of C. perfringens during extended chilling and cold storage.  相似文献   

18.
The effect of combining vacuum cooling with an ozone-based inhibition process (InhVac) on Clostridium perfringens spore germination and outgrowth in cooked pork meat after exponential chilling (from 54.4 to 7.2 °C in 12, 15, 18, or 21 h) and isothermal storage (20, 25, 30, 36, or 45 °C) was evaluated. Ice cooling (IC) and vacuum cooling (VC) were used to compare the effects with InhVac. The samples were inoculated with a three-strain mixture of C. perfringens spores to obtain concentration of ca. 3 log10 CFU/g. C. perfringens growth in samples treated by InhVac were 0.1, 0.37 and 0.9 log10 CFU/g after 15, 18 and 21 h of cooling from 54.4 to 7.2 °C respectively, significantly lower (P<0.05) than those in samples subjected to IC (1.01, 2.10 and 2.8 log10 CFU/g) and VC (0.56, 1.01 and 2.13 log10 CFU/g). Compared to VC and IC, InhVac treatment increased the lag phase (λ), decreased the growth rates (μmax), and extended the sample shelf-life (the time until a 1 log10 CFU/g increase in C. perfringes from the initial concentration value) at all storage temperatures. InhVac-treated samples not only had a longer shelf-life than those treated by VC, but also exhibited almost two times longer shelf-life compared to those subjected to IC regardless of storage temperatures. Additionally, statistical indexes showed that a primary modified Gompertz model and a secondary Square Root model could fit the data well.Industrial relevanceIn this study, an innovative inhibition approach (InhVac) was found to show a better antimicrobial effect on C. perfringens germination and outgrowth in cooked pork meat compared to ice cooling and vacuum cooling under temperature-abuse conditions. A primary modified Gompertz model and a secondary Square Root model could be used to predict the C. perfringens growth in samples subjected to InhVac treatment.  相似文献   

19.
The effect of nitrite and erythorbate on Clostridium perfringens spore germination and outgrowth in ham during abusive cooling (15 h) was evaluated. Ham was formulated with ground pork, NaNO2 (0, 50, 100, 150 or 200 ppm) and sodium erythorbate (0 or 547 ppm). Ten grams of meat (stored at 5 °C for 3 or 24 h after preparation) were transferred to a vacuum bag and inoculated with a three-strain C. perfringens spore cocktail to obtain an inoculum of ca. 2.5 log spores/g. The bags were vacuum-sealed, and the meat was heat treated (75 °C, 20 min) and cooled within 15 h from 54.4 to 7.2 °C. Residual nitrite was determined before and after heat treatment using ion chromatography with colorimetric detection. Cooling of ham (control) stored for 3 and 24 h, resulted in C. perfringens population increases of 1.46 and 4.20 log CFU/g, respectively. For samples that contained low NaNO2 concentrations and were stored for 3 h, C. perfringens populations of 5.22 and 2.83 log CFU/g were observed with or without sodium erythorbate, respectively. Residual nitrite was stable (p > 0.05) for both storage times. Meat processing ingredients (sodium nitrite and sodium erythorbate) and their concentrations, and storage time subsequent to preparation of meat (oxygen content) affect C. perfringens spore germination and outgrowth during abusive cooling of ham.  相似文献   

20.
Cooked, chilled beef and cooked, chilled pork were inoculated with three strains of Clostridium perfringens (NCTC 8238 [Hobbs serotype 2], NCTC 8239 [Hobbs serotype 3], and NCTC 10240). Inoculated products were heated to 75 degrees C, held for 10 min in a circulating water bath to heat activate the spores, and then chilled by circulating chilled brine through the water bath. Samples were chilled from 54.4 to 26.6 degrees C in 2 h and from 26.6 to 4.4 degrees C in 5 h. Differences in initial C. perfringens log counts and log counts after chilling were determined and compared with the U.S. Department of Agriculture (USDA) stabilization guidelines requiring that the chilling process allow no more than 1 log total growth of C. perfringens in the finished product. This chilling method resulted in average C. perfringens increases of 0.52 and 0.68 log units in cooked beef and cooked pork, respectively. These log increases were well within the maximum 1-log increase permitted by the USDA, thus meeting the USDA compliance guidelines for the cooling of heat-treated meat and poultry products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号