首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2020,46(9):13724-13731
Lithium di-silicate (LS2) glass-ceramics modified with copper oxide using the formula: 34.83Li2O–xCuO–(65.17-x)SiO2 (where; x = 1, 2, 4 and 6 mol%) were prepared by melt-quenching followed by controlling heat-treatment. 6 mol% of MnO or Fe2O3 transition metal oxides was added instead of SiO2 in the high CuO-content composition. The effect of the transition cations on phase formation, microstructure, density, thermal expansion, and electrical conductivity was investigated as a function of the controlled crystallization. Results show that up to 4 mol%, Cu+2 was hosted in stable Li2Si2O5 structure. This enhanced the crystal formation, including Li2Si2O5 and its solid solution (ss), Li2SiO3, Li2Cu5(Si2O7)2, CuMn6SiO12, LiFeSi2O6 (ss), and the orthosilicate Li2FeSiO4 (ss). The prepared materials had different density values ranged from 2.35 to 2.79 g/cm3 for glass and varied from 2.43 to 3.15 g/cm3 for glass–ceramics, whereas the α-values of glass-ceramics ranged in the 95–165 × 10−7/°C. The progress of electrical properties in glass-ceramics, as a function of composition, was studied. It was markedly improved by adding different transition cations especially, Fe+3. The study reveals that the incorporation of transition metal ions in LS2 composition has a positive effect on the physical-chemical properties of the prepared glass-ceramics. Therefore, it constitutes to prepare future glass-ceramic applications as hermetic seals of metals as well solid electrolyte materials.  相似文献   

2.
《Ceramics International》2023,49(15):25585-25593
The development of an intelligent infrared camouflage material whose infrared emissivity can actively adapt to environmental changes is a key frontier in the field of infrared stealth. In this study, Mo-doped VO2 powder was prepared via a hydrothermal method, which led to an intelligent infrared camouflage material whose infrared radiation characteristic can adaptively change with the environmental temperature. The samples were characterized by XRD, SEM, DSC, FTIR and infrared thermal imaging. Combined with the results of the first-principles calculation, the coupling effect mechanism of Mo6+ doping concentration on the phase transition temperature and infrared photoelectric properties of VO2 material was systematically analyzed. The results showed that Mo6+ impurities had significant effects on the structure, morphology, composition, phase transition temperature and infrared reflectivity of VO2 powder. The doping process effectively reduced the phase transition temperature of VO2 and expanded the change range of infrared emissivity (△ε) before and after the metal-to-insulator (MIT) transition. With the increasing amount of Mo6+ doping, the infrared reflectance of VO2(M) gradually decreased at low temperatures, while the infrared reflectance of VO2(R) increased at high temperatures. The MIT transition temperature of Mo-doped VO2 versus undoped VO2 reduced to 31.5 °C, and the △ε increased by 153%, this is expected to meet the performance requirements of intelligent infrared stealth materials.  相似文献   

3.
Many attempts have been made to develop applications using the metal-insulator transition (MIT) phenomenon of VO2. However, the difference in the densities of the two phases poses serious obstacle for those applications, as it can destroy or disable during the phase transformations. For microsized or nanosized devices, this aspect can be critical. We attempted to measure the mechanical properties when the two phases co-exist, as well as for an individual phase, via in-situ control of the temperature of plate-shaped VO2. The lamella structure is formed during MIT. At this time, the stress is applied by the gradient of density, and the residual strain can easily occur at the interface of each phase. Therefore, the co-exist state was judged to be the most vulnerable during the MIT. The change in mechanical properties of VO2 during phase transition was also simulated by finite element method.  相似文献   

4.
《Ceramics International》2017,43(8):6417-6424
Ferroelectric phase transition characteristic and electrical conduction mechanism of the high Curie-point (TC) 0.15Pb(Mg1/3Nb2/3)O3−0.4PbHfO3−0.45PbTiO3 (PMN-PHT) piezoelectric ceramics were studied by the temperature dependent Raman spectra and electrical properties. Sole first-order ferroelectric phase transition is demonstrated by the thermal hysteresis behavior of the temperature dependent dielectric constant and the dramatic drop of the derivative of inverse dielectric constant ξ= d(1/εr)/dT around TC in the PMN-PHT ceramics. The temperature dependent Raman spectroscopy not only provides further evidence for the ferroelectric to paraelectric phase transition appearing around TC in the PMN-PHT ceramics, but also reveals the successive phase symmetry changes of the polar nanoregions (PNRs), in which apparent anomalies appear in the Raman peaks' wavenumber, wavenumber distance, intensity, intensity ratio, and line width of some selected Raman modes upon heating. Typical sole cole-cole circle is obtained for the PMN-PHT ceramics in the temperature range of 440–560 °C, based on which the activation energy (Ea) of the electrical conduction is calculated being ~1.2 eV. Such low value of Ea indicates that the oxygen vacancies formed in the PHT-PMN ceramics induced by the evaporation of Pb during the sintering process dominate the high-temperature extrinsic electrical conduction.  相似文献   

5.
Surface morphological control of the metal-insulator transition behaviors of VO2 epitaxial thin films is achieved by annealing substrates of (0001)-Al2O3 single crystals. The well-defined terraces of the (0001)-Al2O3 substrates are formed by annealing in air at 1200 °C. Correspondingly, the surface roughness dramatically decreases in the VO2 epitaxial thin films on the annealed substrates, compared with that on the unannealed substrates. The order of magnitude of the resistivity change ratio (~ 102) of annealed samples across the metal-insulator transition (MIT) decreases by a factor of one, compared with that (~ 103) in unannealed samples. This result is ascribed to grain size effect in the VO2 epitaxial thin films. Moreover, the MIT temperature is reduced in the annealed samples with various thickness, compared with the unannealed ones. A reduction of 14.4 K of the MIT temperature is observed in the thinnest VO2 films on the annealed substrates, compared with the unannealed samples. This behavior results from a compressive strain along the V-V atom chains in the annealed samples, which modifies the orbital occupancy of the V4+ ions. While increasing the film thickness, the MIT change ratio keeps on the order of magnitude 102, and the MIT temperatures of the VO2 films on the annealed substrates becomes closer and closer to those of the unannealed samples due to the weakened substrate effect. This work suggests a promising approach to decrease the MIT temperature and still maintain a moderate change ratio for the MIT, potentially enabling room-temperature electronic devices based on VO2 thin films.  相似文献   

6.
过渡金属氮化物催化性能研究进展   总被引:1,自引:0,他引:1  
过渡金属氮化物具有类似于Pt族贵金属的催化性能得到了广泛的研究.综述了过渡金属氮化钼及助剂促进的氮化钼在加氢脱硫与脱氮、氨合成与分解、芳烃加氢和其他涉氢反应(如炔烃、烯烃加氢、丙酮缩合、肼的分解)中的应用,并介绍了其他金属氮化物(如氮化钒、氮化钴)在催化反应中的应用.  相似文献   

7.
This paper reports the synthesis of different particle size La0.7Sr0.3MnO3 (LSMO) nanoparticles using non-aqueous sol gel synthesis route by calcination at temperatures 750 °C, 850 °C and 950 °C. In the present work, the effect of particle size of LSMO nanoparticles on its structural, magnetic and transport properties has been studied in detail. The X-ray diffraction analysis confirms the formation of LSMO nanoparticles having rhombohedral (R3?c) structure with average particle size of 20 nm, 22.5 nm and 25.6 nm. An increase in magnetization and decrease in coercivity with increase in particle size is attributed to the magnetically disordered surface layer. The bifurcation in ZFC-FC magnetization indicates the possibility of spin glass like behavior of the LSMO nanoparticles. The effect of particle size on the resistivity and magnetoresistance were studied by using different conduction mechanism for different temperature regions. The upturn in the ρ-T curve at lower temperatures was explained by using Kondo-like transport mechanism. The maximum LFMR achieved was 32.3% at a field of 1 T at 10 K for 20 nm LSMO nanoparticle.  相似文献   

8.
异羟肟酸过渡金属络合物在乙苯氧化中的催化性能研究   总被引:6,自引:0,他引:6  
研究了 N-苯甲酰 -N-苯基羟胺 ( BPHA)类过渡金属络合物在乙苯均相氧化中的催化行为 ,考察了络合物催化剂中心金属离子、配体结构以及添加助剂对络合物催化性能的影响 ,并找到了催化剂、助剂的最佳使用浓度及氧化反应的最适宜温度。结果表明 ,中心金属离子的电子结构对络合物催化性能影响最大 ,其活性顺序为 :Cu( BPHA) 2 >Co( BPHA) 2 >Fe( BPHA) 2>Mn( BPHA) 2 >Ni( BPHA) 2 ,配体结构对催化性能有一定影响 ,配体的芳环上有吸电子基团时 ,催化剂分解氢过氧化物的能力增加 ,主要分解产物为苯乙酮。添加轴配体对氧化反应及催化剂的选择性有较大影响 ,其中含端羟基的非环冠醚类及大环冠醚对氢过氧化物的生成和分解都有加速作用 ,含氮助剂吡啶对氧化反应有抑制作用  相似文献   

9.
Recently we established a sintering approach, namely Cold Sintering Process (CSP), to densify ceramics and ceramic-polymer composites at extraordinarily low temperatures. In this work, the microstructures and semiconducting properties of V2O5 ceramic and (1-x)V2O5-xPEDOT:PSS composites cold sintered at 120 °C were investigated. The electrical conductivity (25 °C), activation energy (25 °C), and Seebeck coefficient (50 °C) of V2O5 are 4.8 × 10−4 S/cm, 0.25 eV, and −990 μV/K, respectively. The conduction mechanism was studied using a hopping model. A reversible metal-insulator transition (MIT) was observed with V2O5 samples exposed to a N2 atmosphere, whereas in a vacuum atmosphere, no obvious MIT could be detected. With the addition of 1–2 Vol% PEDOT:PSS, the electrical conductivity (50 °C) dramatically increases from 10−4 to 10−3  10−2 S/cm, and the Seebeck coefficient (50 °C) shifts from −990 to −(600  250) μV/K. All the results indicate that CSP may offer a new processing route for the semiconductor electroceramic development without a compromise to the all-important electrical properties.  相似文献   

10.
The statistical mechanical functions of Gibbs and DiMarzio are briefly reviewed, and subsequent modifications of these equations by other workers are described. Then using computer analysis, three-dimensional representations of the two original expressions are developed to illustrate the overall multifunctional dependence. By recognizing that the free volume (V0) is of secondary importance but that the ratio of the dimensionless parameter (β = ?εkTg) is crucial, a reduced variables plot of TgTg∞ versus 103P? is introduced. From a representative data sampling, the applicability of a single curvilinear function is established along with some initial observations.  相似文献   

11.
We use first-principles-based density functional theory (DFT) calculations to investigate the structural, elastic, and electronic properties of various pristine and oxygen (O)-functionalized double transition metal (DTM) MXenes with general formulas of M2′M′′C2 and M2′M′′C2O2, where M′ = Mo, Cr and M′′ = Ti, V, Nb, Ta. The dynamic stability of the DTM MXenes are assessed and elastic stiffness constants (Cij) are used to investigate the mechanical stability and properties of the compositions. The calculated elastic properties of the pristine Mo-based MXenes are found to be superior compared to Cr-based compounds. Furthermore, the O-functionalized MXenes exhibit improved in-plane elastic constants, Young's moduli, and shear moduli compared to their pristine counterpart. We observe that the hybridization of the energy states results in stronger covalent interactions as such increased elastic properties for the M2′M′′C2O2 MXenes. Ashby plot clearly demonstrates superior materials properties of O-functionalized Mo-based DTM MXenes compared to other commonly known two-dimensional materials. All the MXenes exhibit metallic character evident from the density of states (DOS) calculations. Additionally, the work functions are studied and the calculated values are higher in the case of O-functionalized MXenes. Overall, this work will be a guide for future investigations on the mechanical properties of DTM MXenes for their targeted applications in structural nanocomposites.  相似文献   

12.
The high-Curie temperature (TC) 0.15Pb(Mg1/3Nb2/3)O3-0.38PbHfO3-0.47PbTiO3 (PMN-PH-PT) piezoelectric ceramics were prepared by the partial oxalate route via the B-site oxide mixing method. The obtained uniform nm-sized PMN-PH-PT precursor powders provide high calcining and sintering activity for synthesizing ceramics, based on which the synthesis conditions were tailored as calcining at 775 °C and sintering at 1245 °C. The partial oxalate route synthesized PMN-PH-PT ceramics are far superior to the counterparts synthesized by the columbite precursor method and exhibit excellent thermal stability of the piezoelectric properties under TC (~292 °C), ensuring the potential application in transducers under elevated environmental temperatures. The temperature dependent Raman spectroscopy not only proves the occurrence of the ferroelectric to paraelectric phase transition around TC, but also confirms the successive phase symmetry transitions, which correlate with the polar nanoregions (PNRs) and/or the coexistence of multiple ferroelectric phases, revealing the origin of the enhanced electrical properties in the PMN-PH-PT ceramics.  相似文献   

13.
A dense Ce0.9Gd0.1O2−d (GDC) interlayer is an essential component of the SOFCs to inhibit interfacial elemental diffusion between zirconia-based electrolytes (eg YSZ) and cathodes. However, the characteristic high sintering temperature of GDC (>1400°C) makes it challenging to fabricate an effective highly dense interlayer owing to the formation of more resistive (Zr,Ce)O2 interfacial solid solutions with YSZ at those temperatures. To fabricate a useful GDC interlayer, we studied the influence of transition metal (TM) (Co, Cu, Fe, Mn, & Zn) doping on the sintering and electrochemical properties of GDC. Dilatometry data showed dramatic drops in the necking and final sintering temperatures for the TM-doped GDCs, improving the densification of the GDC in the order of Fe > Co > Mn > Cu > Zn. However, the electrochemical impedance data showed that among various transition metal dopants, Mn doping resulted in the best electrochemical properties. Anode supported SOFCs with Mn-doped, nano, and commercial-micron GDC interlayers were compared with regard to their performance and stability levels. Although all of the SOFCs showed stable performance, the SOFC with the Mn-doped GDC interlayer showed the highest power density of 1.14 W cm−2 at 750°C. Hence, Mn-doped GDC is suggested for application as an effective diffusion barrier layer in SOFCs.  相似文献   

14.
Shear properties of commercially available polystyrenes with narrow molecular weight distribution have been measured in the transition region from 100°C to 150°C and over a frequency range from 50 Hz to 1000 Hz. The effect of molecular weight or shear properties is established with four polymers ranging in molecular weight from 20,000 to 860,000. A broad, bimodal distribution is also studied. The properties of these polymers, with two different diluents added, illustrate the rather marked qualitative difference in effects caused by diluents.  相似文献   

15.
董群  于婷  仇登可  丰铭  孟欣 《化工进展》2012,31(2):355-359
介孔过渡金属氧化物作为一种非硅基介孔材料,在光、电、磁、传感、催化等领域有着潜在的应用价值,是近年来研究的热点。本文主要从合成角度对几种典型的介孔过渡金属氧化物的最新研究进展作了总结,其中包括Ti、W、Nb、Mn、Mo、Ni、Co等。详细阐述了其合成方法、合成过程,也涉及了少量的应用研究,并根据目前合成该类材料所面临的难题,提出了介孔过渡金属氧化物以后的研究方向,即合成具有高热稳定性、孔壁高度结晶以及长程有序的介孔材料。  相似文献   

16.
Electrically conductive blends based on polyaniline-dodecylbenzene sulfonic acid (Pani.DBSA)/styrene-butadiene-styrene (SBS) block copolymer have been prepared in the presence of different plasticizers such as dioctyl phthalate (DOP) and cashew nut shell liquid (CNSL). The products were characterized by ultraviolet-visible (UV-vis) spectrometry, scanning electron microscopy, X-ray diffraction, electron paramagnetic resonance (EPR) and resistivity measurements. The presence of DOP resulted in an increase of the electrical resistivity whereas the increasing concentration of CNSL resulted in a decrease of electrical resistivity. In the latter case, the presence of cardanol, a phenol-type compound in CNSL, may be responsible for the improved electrical performance, probably because of a secondary doping process, which changes the molecular conformation of Pani.DBSA chains from “compact coil” to “expanded coil”. In addition, CNSL contributes to the formation of cocontinuous-type morphology with conducting pathways in larger extension. EPR studies also showed an increase of the polaron mobility as the amount of CNSL in the blend increases.  相似文献   

17.
过渡金属羰基络合物作为一种绿色、高效催化剂,在羰基化反应过程中起到了很好的催化作用。综述了几种主要的过渡金属羰基络合催化剂在羰基化反应中的主要应用及其催化机理。羰基化反应主要包括不饱和烃、有机卤代物、醇、杂环化合物等有机物的羰基化反应。  相似文献   

18.
We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.  相似文献   

19.
Lead-free piezoelectric ceramics of Ba0.70Ca0.30Ti1?xFexO3 (x=0–0.03) have been synthesized by a conventional solid state reaction method. The influence of Fe content on the microstructure, phase transition, dielectric, ferroelectric, and piezoelectric properties is investigated systematically. The ceramics with x≤0.02 are diphasic composites of tetragonal Ba0.80Ca0.20TiO3:Fe and orthorhombic Ba0.07Ca0.93TiO3:Fe solid solutions. The tetragonal phase is gradually suppressed as x increases, the ceramic with x=0.03 is found to have diphasic pseudocubic and orthorhombic phases. And the grain size is dependent on Fe content significantly. Introduction of Fe at B-sites improves the densification and decreases the sintering temperature. As x increases from 0 to 0.03, the room temperature relative dielectric permittivity enhances, dielectric loss decreases, and the Curie temperature decreases monotonically from 128 °C to 58 °C. However, the ferroelectricity enhances slightly and reaches the maximum near x=0.005, and then weakens with increasing x. On the other hand, the piezoelectric coefficient (d33) and the electromechanical coupling coefficient (kp) decrease simultaneously with increasing x, whereas the mechanical quality factor (Qm) increases significantly. The structure–electrical properties relationship is discussed intensively to give more information on (Ba,Ca)TiO3-based lead-free piezoelectric ceramics.  相似文献   

20.
Lead-free (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3-xwt%CuOywt%Y2O3 (BCZT-CuxYy) ceramics with high piezoelectricity were synthesized by the conventional solid-state reaction method. The role of Cu and Y (Cu/Y) in sintering, phase transition, and electrical properties of such ceramics was systematically studied. The results indicated that the sintering temperatures of BCZT-CuxYy decreased by at least 100?°C due to the low melting point of CuO. The promotion effect of Cu/Y on phase transition lied in the improvement of TC by 5–15?°C and the coexistence of O+T phase near room temperature. The contribution of Cu/Y to electrical properties was mainly ascribed to the grains growth, the formed oxygen vacancies and lattice distortions, and the donor doping effect of Y3+. Adding 0.10?wt% Cu2+ and 0.06?wt% Y3+ into BCZT dramatically improved the electrical properties as following: d33 =?552 pC/N, εm =?10175, εr =?4546, tanδ =?0.016, TC =?100?°C, kp =?0.475, Qm =?157.2, Pr =?10.82 μC/cm2 and EC =?2.33?kV/cm. A plausible mechanism was obtained to explain the reaction process and the favorable performances of BCZT-CuxYy. Co-doping Cu2+ and Y3+ into BCZT could be a promising method to improve and balance the sintering, phase transition, and electrical properties for potential practical applications of lead-free piezoceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号