首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We describe an apparatus for measuring scattering length density and structure of molecular layers at planar solid-liquid interfaces under high hydrostatic pressure conditions. The device is designed for in situ characterizations utilizing neutron reflectometry in the pressure range 0.1-100 MPa at temperatures between 5 and 60?°C. The pressure cell is constructed such that stratified molecular layers on crystalline substrates of silicon, quartz, or sapphire with a surface area of 28 cm(2) can be investigated against noncorrosive liquid phases. The large substrate surface area enables reflectivity to be measured down to 10(-5) (without background correction) and thus facilitates determination of the scattering length density profile across the interface as a function of applied load. Our current interest is on the stability of oligolamellar lipid coatings on silicon surfaces against aqueous phases as a function of applied hydrostatic pressure and temperature but the device can also be employed to probe the structure of any other solid-liquid interface.  相似文献   

2.
A novel experimental facility to carry out simultaneous polarized neutron reflectometry (PNR) and anisotropic magnetoresistance (AMR) measurements is presented. Performing both techniques at the same time increases their strength considerably. The proof of concept of this method is demonstrated on a CoO/Co bilayer exchange bias system. Although information on the same phenomena, such as the coercivity or the reversal mechanism, can be separately obtained from either of these techniques, the simultaneous application optimizes the consistency between both. In this way, possible differences in experimental conditions, such as applied magnetic field amplitude and orientation, sample temperature, magnetic history, etc., can be ruled out. Consequently, only differences in the fundamental sensitivities of the techniques can cause discrepancies in the interpretation between the two. The almost instantaneous information obtained from AMR can be used to reveal time-dependent effects during the PNR acquisition. Moreover, the information inferred from the AMR measurements can be used for optimizing the experimental conditions for the PNR measurements in a more efficient way than with the PNR measurements alone.  相似文献   

3.
4.
NiC/Ti中子超镜是一种高性能的中子多层膜光学元件,是提升中子导管、聚焦装置等中子光学系统的中子利用率的关键之一。为了提升NiC/Ti中子超镜的性能,本文面向具有不同厚度NiC膜层的NiC/Ti多层膜,分别采用X射线掠入射反射和X射线衍射的方法表征了NiC/Ti多层膜的膜层厚度、界面粗糙度和膜层晶向结构。研究结果表明:随着NiC膜层厚度的增长,除了在较小尺度(≤2.5nm),NiC-on-Ti界面的粗糙度基本保持不变;而Ti-on-NiC界面的粗糙度却呈现出较大的变化。具有不同厚度的NiC膜层的NiC/Ti多层膜的界面粗糙度呈现不对称性的变化,主要原因在于NiC膜层的微结构随着膜层厚度的增长而产生了变化。  相似文献   

5.
The design and testing of a new large volume Inconel pressure cell for the in situ study of supercritical hydrothermal syntheses using time-resolved neutron diffraction is introduced for the first time. The commissioning of this new cell is demonstrated by the measurement of the time-of-flight neutron diffraction pattern for TiO(2) (Anatase) in supercritical D(2)O on the POLARIS diffractometer at the United Kingdom's pulsed spallation neutron source, ISIS, Rutherford Appleton Laboratory. The sample can be studied over a wide range of temperatures (25-450 °C) and pressures (1-355 bar). This novel apparatus will now enable us to study the kinetics and mechanisms of chemical syntheses under extreme environments such as supercritical water, and in particular to study the crystallization of a variety of technologically important inorganic materials.  相似文献   

6.
An image enhancement technique for a visualization of gas–liquid metal two-phase interfaces is developed for a real time neutron radiography (RTNR) technique, where the dynamic motion of bubbles inside liquid metal cannot be observed optically. The proposed image enhancement technique consisted of noise reduction, pipe–fluid interface determination, and image smoothing procedures. The results show that the RTNR technique is able to visualize the dynamics of gas–liquid metal interfaces, and also is able to determine more accurate two-phase flow parameters such as void fraction.  相似文献   

7.
This paper presents the design and performance of a novel high-temperature and high-pressure continuous-flow reactor, which allows for x-ray absorption spectroscopy or diffraction in supercritical water and other fluids under high pressure and temperature. The in situ cell consists of a tube of sintered, polycrystalline aluminum nitride, which is tolerant to corrosive chemical media, and was designed to be stable at temperatures up to 500 °C and pressures up to 30 MPa. The performance of the reactor is demonstrated by the measurement of extended x-ray absorption fine structure spectra of a carbon-supported ruthenium catalyst during the continuous hydrothermal gasification of ethanol in supercritical water at 400 °C and 24 MPa.  相似文献   

8.
Inelastic neutron scattering measurements typically require two orders of magnitude longer data collection times and larger sample sizes than neutron diffraction studies. Inelastic neutron scattering measurements on pressurised samples are particularly challenging since standard high-pressure apparatus restricts sample volume, attenuates the incident and scattered beams, and contributes background scattering. Here, we present the design of a large volume two-layered piston-cylinder pressure cell with optimised transmission for inelastic neutron scattering experiments. The design and the materials selected for the construction of the cell enable its safe use to a pressure of 1.8 GPa with a sample volume in excess of 400 mm(3). The design of the piston seal eliminates the need for a sample container, thus providing a larger sample volume and reduced absorption. The integrated electrical plug with a manganin pressure gauge offers an accurate measurement of pressure over the whole range of operational temperatures. The performance of the cell is demonstrated by an inelastic neutron scattering study of UGe(2).  相似文献   

9.
In polymer composites the interaction between polymer matrix and filler particles often results in nucleation of spherulites. The principles of polymer crystal nucleation and spherulite growth are investigated using scanning transmission electron microscopy (STEM) and microdiffraction techniques in combination with polarized light microscopy. Simultaneous diffraction patterns from the interface of the filler and the polymer were obtained. Special precautions for successful recording of the diffraction patterns were used to overcome the rapid loss of polymer crystallinity, resulting from electron beam damage. Analysis of the diffraction patterns has shown that partial epitaxial correlation between the atomic periodicity of the particle surface and the molecular periodicity of polymer chains is always present when spherulites are nucleated. STEM images show that only large particles, with well developed facets (cleavage planes), are nucleating. The nucleating efficiency of the filler is therefore dependent on the size as well as on the crystallographic orientation of the facet. Small particles, or those with no suitable facets, do not affect the crystalline structure of the polymer. It is also shown that anisotropic polymer structures can be formed by inhomogeneous dispersion of nucleating filler particles.  相似文献   

10.
A novel means of generating and detecting surface waves at liquid-gas interfaces has been successfully developed. Electrocapillarity is used to generate the waves which are detected via specular reflection of a laser beam from the fluid surface to a position sensitive photodiode. Such a scheme is compact, sensitive, and does not mechanically touch the fluid surface. A preliminary study of highly damped waves on the magnetically oriented liquid crystal MBBA is reported.  相似文献   

11.
We present a modified Paris-Edinburgh press which allows rotation of the anvils and the sample under applied load. The device is designed to overcome the problem of having large segments of reciprocal space obscured by the tie rods of the press during single-crystal neutron-scattering experiments. The modified press features custom designed hydraulic bearings and provides controls for precision rotation and positioning. The advantages of using the device for increasing the number of measurable reflections are illustrated with the results of neutron-diffraction experiments on a single crystal of germanium rotated under a load of 70 tonnes.  相似文献   

12.
We report the design of an improved electrochemical cell for atomic force microscope measurements in corrosive electrochemical environments. Our design improvements are guided by experimental requirements for studying corrosive reactions such as selective dissolution, dealloying, pitting corrosion, and∕or surface and interface forces at electrified interfaces. Our aim is to examine some of the limitations of typical electrochemical scanning probe microscopy (SPM) experiments and in particular to outline precautions and cell-design elements, which must necessarily be taken into account in order to obtain reliable experimental results. In particular, we discuss electrochemical requirements for typical electrochemical SPM experiments and introduce novel design features to avoid common issues such as crevice formations; we discuss the choice of electrodes and contaminations from ions of reference electrodes. We optimize the cell geometry and introduce standard samples for electrochemical AFM experiments. We have tested the novel design by performing force-distance spectroscopy as a function of the applied electrochemical potential between a bare gold electrode surface and a SAM-coated AFM tip. Topography imaging was tested by studying the well-known dealloying process of a Cu(3)Au(111) surface up to the critical potential. Our design improvements should be equally applicable to in situ electrochemical scanning tunneling microscope cells.  相似文献   

13.
We present our recent development of a high temperature high pressure cell for neutron scattering. Combining a water cooled Nb1Zr pressure cell body with an internal heating furnace, the sample environment can reach temperatures of up to 1500 K at a pressure of up to 200 MPa at the sample position, with an available sample volume of about 700 mm(3). The cell material Nb1Zr is specifically chosen due to its reasonable mechanical strength at elevated temperatures and fairly small neutron absorption and incoherent scattering cross sections. With this design, an acceptable signal-to-noise ratio of about 10:1 can be achieved. This opens new possibilities for quasielastic neutron scattering studies on different types of neutron spectrometers under high temperature high pressure conditions, which is particularly interesting for geological research on, e.g., water dynamics in silicate melts.  相似文献   

14.
Dai LL  Tarimala S  Wu CY  Guttula S  Wu J 《Scanning》2008,30(2):87-95
We have employed a laser scanning confocal microscope (LSCM) to study the structure and dynamics of microparticles at Pickering emulsion interfaces. The microparticles can have rich morphology at the emulsion interfaces, ranging from an aggregated structure to colloidal lattices, with a possibility of involving heterogeneous particles. With a specific interest in colloidal lattices, we find that although the enhanced electrostatic repulsion explains the formation of colloidal lattices by sulfate-treated polystyrene (S-PS) particles, it fails to interpret the unsuccessfulness of assembling lattices containing single-species carboxylate-treated polystyrene (C-PS) particles. A small percentage of C-PS particles in the colloidal mixture does not disturb the formation of lattices made of S-PS particles. The LSCM also provides a meaningful way to probe dynamic information. The diffusion of single particles at the emulsion interfaces depends strongly on the oil phase viscosity, particle size, and particle wettability. A highly curved emulsion interface slows the motion of microparticles at oil-water interfaces but the interface curvature effect decreases with increasing oil phase viscosity. Although the confocal microscope was originally used as an imaging tool, we find that the thermodynamic equilibrium of colloidal lattices can be disturbed and even destroyed when increasing the output laser intensity.  相似文献   

15.
A variety of fluid space lubricants, i.e., synthetic oils thickened by solid additives (particles of PTFE and MoS2), has been developed. These lubricants present a solid-like behaviour under yield stress, and a strong non-Newtonian effect during flow. Measurement of the yield stresses revealed an unexpectedly strong interaction between a synthetic hydrocarbon oil and one type of PTFE particle. Furthermore, the substitution of 1 vol.% PTFE particles by MoS2 particles introduced a significant change in the yield stress values. This effect is also apparent in viscosity measurements. These lubricants display, through their rheological behaviour, good ability to replenish contacts over a wide range of temperatures, as shown by measurements taken at −20°C and −60°C.  相似文献   

16.
修复化工企业的化肥生产装置中的在用设备,最主要的一点是要采用科学方法和制定有效合理的修复技术方案。在进行高压换热器设备的试验时,所用器具的设计研制,采用安全可靠、经济实用和具有一定通用性的元部件。  相似文献   

17.
An automated system for sample exchange and tracking in a cryogenic environment and under remote computer control was developed. Up to 24 sample "cans" per cycle can be inserted and retrieved in a programed sequence. A video camera acquires a unique identification marked on the sample can to provide a record of the sequence. All operations are coordinated via a LABVIEW program that can be operated locally or over a network. The samples are contained in vanadium cans of 6-10 mm in diameter and equipped with a hermetically sealed lid that interfaces with the sample handler. The system uses a closed-cycle refrigerator (CCR) for cooling. The sample was delivered to a precooling location that was at a temperature of approximately 25 K, after several minutes, it was moved onto a "landing pad" at approximately 10 K that locates the sample in the probe beam. After the sample was released onto the landing pad, the sample handler was retracted. Reading the sample identification and the exchange operation takes approximately 2 min. The time to cool the sample from ambient temperature to approximately 10 K was approximately 7 min including precooling time. The cooling time increases to approximately 12 min if precooling is not used. Small differences in cooling rate were observed between sample materials and for different sample can sizes. Filling the sample well and the sample can with low pressure helium is essential to provide heat transfer and to achieve useful cooling rates. A resistive heating coil can be used to offset the refrigeration so that temperatures up to approximately 350 K can be accessed and controlled using a proportional-integral-derivative control loop. The time for the landing pad to cool to approximately 10 K after it has been heated to approximately 240 K was approximately 20 min.  相似文献   

18.
We present the design and construction of a high-pressure (200 bars) and high-temperature (600 °C) x-ray diffraction (XRD) cell for the in situ investigation of the hydrogen sorption of hydrides. In combination with a pressure, composition, and temperature system, simultaneous XRD and volumetric measurements become accessible. The cell consists of an x-ray semi-transparent hemispherical beryllium (Be) dome covering a heatable sample stage, which simultaneously allows sample temperatures of up to 600 °C in an applied hydrogen atmosphere of up to 200 bars. The system volume is as low as possible to maximize the precision of the volumetric measurements. Due to the high thermal conductivity of hydrogen, and in order to preserve the mechanical stability of the beryllium, the cell is water cooled. Its operability was studied on the example of the hydrogen absorption of Mg(2)Ni. The advantages and limitations of the proposed design are discussed.  相似文献   

19.
A fluidic cell based setup is described which allows for microbeam grazing incidence small angle x-ray scattering characterization of the interface between a solid substrate and a flowing liquid. This cell can potentially be used to study in situ a wide variety of systems ranging from synthetic and natural colloids to biological molecules. The selected channel geometry enables the characterization of the solid-liquid interface during mixing of different solutions. As a proof of concept, measurements on an aqueous gold nanoparticle solution in contact with a glass surface are presented that show that the structure at the interface can be probed during flow.  相似文献   

20.
The design of a high pressure (HP) cell for neutron reflectivity experiments is described. The cell can be used to study solid-liquid interfaces under pressures up to 2500 bar (250 MPa). The sample interface is based on a thick silicon block with an area of about 14 cm(2). This area is in contact with the sample solution which has a volume of only 6 cm(3). The sample solution is separated from the pressure transmitting medium, water, by a thin flexible polymer membrane. In addition, the HP cell can be temperature-controlled by a water bath in the range 5-75°C. By using an aluminum alloy as window material, the assembled HP cell provides a neutron transmission as high as 41%. The maximum angle of incidence that can be used in reflectivity experiments is 7.5°. The large accessible pressure range and the low required volume of the sample solution make this HP cell highly suitable for studying pressure-induced structural changes of interfacial proteins, supported lipid membranes, and, in general, biomolecular systems that are available in small quantities, only. To illustrate the performance of the HP cell, we present neutron reflectivity data of a protein adsorbate under high pressure and a lipid film which undergoes several phase transitions upon pressurization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号