首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的 研究高强铝合金高速斜角切削参数对切屑形态及演化规律的影响,探究切屑形态转变的内在机理,为延长刀具使用寿命、改进加工工艺提供理论依据.方法 基于通用有限元软件建立7N01铝合金高速斜角切削三维数值模型,利用加工中心、三向测力仪进行切削试验,通过金相显微镜和扫描电子显微镜对切屑形貌进行表征,结合有限元仿真结果,探明切...  相似文献   

2.
单颗磨粒磨削钛合金TC4成屑过程仿真研究   总被引:2,自引:0,他引:2  
采用有限元模拟技术对钛合金TC4材料的单颗磨粒磨屑形成过程进行了仿真研究.研究表明:钛合金TC4在单颗磨粒磨削过程中发生绝热剪切,形成锯齿状磨屑;磨削过程中单颗磨粒磨削力成周期变化;磨粒负前角增大,锯齿化程度加深;磨削速度提高,磨屑剪切带宽度减小;仿真分析得到的磨屑形态与实验结果相一致.  相似文献   

3.
锯齿形切屑绝热剪切塑性变形   总被引:2,自引:0,他引:2  
通过正交切削实验获得不同切削速度下的切屑,在扫描电镜下测量不同切削速度下切屑的微观几何形态与仿真结果进行比较。结果表明,仿真模型较好模拟了切屑的微观几何形态。对钛合金切削加工过程中的锯齿形切屑形成过程进行了仿真,分析了锯齿形切屑形成过程中等效应力、等效应变、等效应变率的分布变化规律。  相似文献   

4.
目的 对TC4铣削过程中锯齿状切屑的形成与对应产生的加工表面形貌特征进行研究,掌握钛合金TC4高速铣削加工切屑形态随铣削速度的变化规律,从而提高加工表面质量和效率。方法 基于有限元软件,建立钛合金TC4二维变厚度切削模型,通过仿真和铣削试验分析铣削速度对切屑形态的影响规律。利用超景深显微镜和PS50表面轮廓仪对TC4铣削过程中形成的切屑形态及工件加工表面形貌进行观测和分析,确定铣削加工TC4过程中铣削速度与切屑形态、工件表面形貌和表面粗糙度之间的关系。结果 铣削试验验证得出铣削力仿真值与试验值最大误差为9.86%,验证了二维变厚度切削模型的准确性。随着铣削速度从40 m/min增大到120 m/min,切屑形态由带状转变为锯齿状,且铣削力逐渐减小。同时,铣削速度由80 m/min增大到240 m/min时,切屑的锯齿化系数和剪切带内的剪切角均增大,而剪切带间距减小,TC4加工表面波纹加深、波纹间距变宽,并且伴随有大量韧窝出现,导致表面粗糙度值增大。结论 掌握锯齿状切屑几何特征与工件表面形貌随铣削速度的变化规律,以便在铣削加工TC4过程中对锯齿状切屑进行控制,对于提高工件加工表面质量和加...  相似文献   

5.
深入研究锯齿形切屑的形成过程及表征有利于工业生产中的切屑控制。用锯齿频率、锯齿化程度及绝热剪切带间距来对锯齿形切屑进行表征。鉴于Ti6Al4V在加工过程中易于形成锯齿形切屑,因此选择Ti6Al4V作为工件材料,通过高速切削Ti6Al4V实验,收集不同切削速度和每齿进给量下的锯齿形切屑;将获得的锯齿形切屑进行抛磨及腐蚀后,在VHX-600 ESO数码显微镜下观察切屑形貌,计算不同切削条件下锯齿频率、锯齿化程度及绝热剪切带间距。结果表明:随着切削速度的提高,锯齿频率及锯齿化程度增大,绝热剪切带间距减小;随着每齿进给量的增大,锯齿频率减小,锯齿化程度及绝热剪切带间距增大。锯齿化程度可以作为普通切削、高速切削及超高速切削的判据。  相似文献   

6.
航空铝合金7075-T651高速铣削锯齿形切屑的形成机理研究   总被引:1,自引:0,他引:1  
目的分析航空铝合金高速铣削锯齿形切屑的形成过程及机理,为提高工件表面质量、延长刀具使用寿命提供理论依据。方法考虑航空铝合金在高速铣削过程中铣削厚度变化的特点,选用合理的本构模型及材料断裂准则,将三维铣削简化为二维变厚度的正交切削热力耦合有限元模型,对锯齿形切屑的形成过程进行有限元模拟,并经铣削试验验证有限元模型的准确性。结果在2~16 m/s的切削速度范围内,铣削力、切削温度、锯齿形切屑形貌均得到了准确的仿真。随着切削速度的增加,切屑厚度、切屑连续部分高度和剪切带间距都有减小的趋势,相反,剪切角随切削速度的增加而增大。切削速度为16m/s时,锯齿形切屑在切屑厚度较大的一侧出现,并随着切屑厚度减小而逐渐消失,变为均匀带状切屑,准确仿真了切削厚度变化下锯齿形切屑形貌。结论提出考虑剪切带宽度变化的三阶段锯齿形切屑形成模型,通过剪切带内外的应变、应变率和温度的变化分析了绝热剪切过程,并使用分割强度比参数量化锯齿形切屑应变程度,控制锯齿形切屑形态。  相似文献   

7.
8.
A new material constitutive law is implemented in a 2D finite element model to analyse the chip formation and shear localisation when machining titanium alloys. The numerical simulations use a commercial finite element software (FORGE 2005®) able to solve complex thermo-mechanical problems. One of the main machining characteristics of titanium alloys is to produce segmented chips for a wide range of cutting speeds and feeds. The present study assumes that the chip segmentation is only induced by adiabatic shear banding, without material failure in the primary shear zone. The new developed model takes into account the influence of strain, strain rate and temperature on the flow stress and also introduces a strain softening effect. The tool chip friction is managed by a combined Coulomb–Tresca friction law. The influence of two different strain softening levels and machining parameters on the cutting forces and chip morphology has been studied. Chip morphology, cutting and feed forces predicted by numerical simulations are compared with experimental results.  相似文献   

9.
《Acta Materialia》2008,56(17):4635-4646
Detailed microscopic observations of the shear surfaces of a deformed, but unfractured, bulk metallic glass sample reveal a wealth of information on the deformation characteristics, kinetics and influence of temperature during serrated flow. The shear surfaces exhibit shear striations, which are similar to those resulting from viscous-like flow in rock-forming minerals. On the shear surface only a few areas show typical vein patterns, the thicknesses of which are less than those known from fracture surfaces. Combined with estimates for adiabatic heating, this indicates that sufficiently high temperatures are already present during shear banding before fracture, though instigated by non-purely adiabatic effects. A kinetic model based on an energy variable which reflects the structural relaxation ability is proposed that accounts for the occurrence of serrated flow combined with negative strain rate sensitivity, and the transition to non-serrated flow, i.e. positive strain rate sensitivity, below a critical temperature and strain rate.  相似文献   

10.
试验设计多组切削用量,采用正交试验方法,对不同切削用量参数下,PCBN刀具切削钛合金TC4的切屑形态进行研究,同时对PCBN刀具车削钛合金TC4进行二维有限元仿真,从理论上对锯齿化切屑形成原因进行分析。试验结果表明,PCBN刀具切削钛合金TC4产生的切屑存在锯齿状切屑、长条形带状切屑和弯曲旋状切屑;切削用量对切屑锯齿化存在较大的影响,表现为较小的切削用量条件下形成锯齿状切屑,随着切削用量参数变大,切屑呈现长条带状和弯曲旋状切屑;试验从周期性断裂理论和切削温度角度对切屑形态进行了分析讨论,并得到当PCBN刀具在高速下切削钛合金TC4材料时,形成的切屑并不均是锯齿状的结论。  相似文献   

11.
This paper presents a novel prediction method of the yield stress and fracture toughness for ductile metal materials through the metal cutting process based on Williams' Model [38]. The fracture toughness of the separation between the segments in serrated chips in high speed machining is then deduced. In addition, an energy conservation equation for high speed machining process, which considers the energy of new created workpiece surfaces, is established. The fracture energy of serrated chips is taken into the developed energy conservation equation. Five groups of experiments are carried out under the cutting speeds of 100, 200, 400, 800 and 1500 m/min. The cutting forces are measured using three-dimensional dynamometer and the relevant geometrical parameters of chips are measured with the aid of optical microscope. The experiment results show that the yield stress of machined ductile metal material presents an obviously increasing trend with the cutting speed increasing from 100 to 800 m/min while it decreases when the cutting speed increases to 1500 m/min further. Meanwhile, the fracture toughness between the chip and bulk material displays a slightly increasing tendency. In high speed machining, the fracture toughness of the separation between the segments in serrated chips also presents increasing trend with the increasing cutting speed, whose value is much greater than that between the chip and bulk material. In the end, the distribution of energy spent in cutting process is analyzed which mainly includes such four portions as plastic deformation, friction on the tool–chip interface, new generated surface and chip fracture. The results show that the proportion of plastic deformation is the largest one while it decreases with the cutting speed increasing. However, the proportions of energy spent on new created surface and chip fracture increase due to the increasing of both the chip's fracture area and the fracture toughness.  相似文献   

12.
为了高效加工出三维整体高翅片强化传热管,提出采用多刀刨削加工三维整体高翅片强化传热管的制造方法——利用在基管上同时刨削出多片不脱离工件的、不发生卷曲的切屑作为三维整体高翅片强化传热管的翅片。研究刀具前角、切削厚度对切屑卷曲的影响,初步探讨翅片刨削成形即切屑不卷曲的机理。结果表明,切屑不卷曲的条件是当刀具前角为60°或55°时,切削厚度在0.15~0.25 mm之间,或者前角为50°,切削厚度在0.1~0.2 mm之间时,切屑不发生卷曲;切屑不卷曲的机理在于切屑根部没有发生明显的剪切变形。  相似文献   

13.
为研究TC4切削加工过程中切削速度对锯齿形切屑破坏程度的影响,对TC4进行单因素切削试验,分析TC4的动态行为,并进行有限元仿真,进一步探究锯齿形切屑影响因素以及切屑与切削速度之间的联系。结果表明:在TC4切削过程中,随着切削速度的提高,切屑的锯齿状越来越明显;通过数值计算得出,TC4的能量势垒随着切削速度增大而降低,而绝热剪切带内部应力、应变随着切削速度提高而增大,切削速度越高越容易形成锯齿形切屑。  相似文献   

14.
A comprehensive investigation of the wear progress and chip formation was performed on an ultra-fine-grained cemented carbide ball nose end mill coated with a novel nano-multilayered TiAlCrN/NbN coating, by dry machining-hardened steel AISI H13 (HRC 55–57) at a cutting speed of 300 m/min. Flank wear and cutting forces were measured as the wear progressed; chip temperatures were estimated. The surface morphology of the tools were studied by using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis techniques. Results showed that protective oxide films (Al–O, Cr–O and Nb–O) were formed during cutting. With the combination of the protective oxide films and the fine-grain tough substrate, the tool wear rate was greatly reduced compared to the other coatings tested. Continuous and saw-tooth chips were identified, corresponding to a new sharp tool and a worn tool, respectively. The mechanisms of saw-tooth chip formation were found to be a combination of “crack theory” and “adiabatic shear theory”. The characteristics of the chips were studied in detail with the results showing that during formation the chips underwent a combined effect of strain hardening and thermal softening, followed by a quenching phenomenon.  相似文献   

15.
The transition of continuously smooth chip flow to periodically serrated chip flow as the cutting speed increasing is one of the most fundamental and challenging problems in high speed machining. Here, an explicit expression of the critical cutting speed for the onset of serrated chip flow, which is given in terms of material properties, uncut chip thickness and tool rake angle, is achieved based on dimensional analysis and numerical simulations. It could give reasonable predictions of the critical cutting speeds at which chips change from continuous to serrated for various metallic materials over wide ranges of uncut chip thickness and tool rake angle. More interestingly, it is found that, as the turbulent flow is controlled by the Reynolds number, the transition of the serrated chip flow mode is dominated by a Reynolds thermal number. Furthermore, the influences of material properties on the emergence of serrated chip flow are systematically investigated, the trends of which show good agreement with Recht’s classical model.  相似文献   

16.
In hard machining, sawtooth chip formation is due to initiation of adiabatic shear within the lower region of the primary shear zone. Catastrophic failure within the upper region of the shear zone occurs through either of two different mechanisms and results in the rapid release of elastic strain energy. This periodic release of strain energy is the dominant source of acoustic emission during sawtooth chip formation. In addition to adiabatic shearing in the primary and secondary shear zones, there is evidence to suggest that it occurs in the tertiary shear zone also; namely the surface white layer.  相似文献   

17.
Titanium alloy Ti6Al4V is the most commonly used titanium alloy in the aerospace and medical device industries due to its superior properties. There has been a considerable amount of research to better understand the serrated chip formation mechanism of titanium alloy Ti6Al4V by using finite element simulation of machining. An accurate representation of the behavior of the material is important in order to obtain reliable results from the finite element simulation. Flow softening behavior has been integrated into the material constitutive models to simulate adiabatic shear bands and serrated chips. Flow softening is usually related to the dynamic recrystallization phenomenon which initiates after a critical temperature. The aim of this study is to investigate the influence of various flow softening conditions on the finite element simulation outputs for machining titanium alloy Ti6Al4V. For this purpose, a new flow softening expression, which allows defining temperature-dependent flow softening behavior, is proposed and integrated into the material constitutive model. The influence of flow softening below the critical temperature, as adopted in recent studies, is also investigated. Various temperature-dependent flow softening scenarios are tested using finite element simulations, and the results are compared with experimental data from the literature. The results showed that the flow softening initiating around 350-500 °C combined with appropriate softening parameters yields simulation outputs that agree well with the experimental measurements.  相似文献   

18.
Formation of ultra-fine structure in several materials by severe plastic deformation has been studied by plane strain machining. The microstructure generated in machined chips was characterized by optical microscopy and transmission electron microscopy as ultra-fine grains. A theoretical model was adopted to evaluate large plastic deformation in the primary deformation zone, the results show that the typical shear strains generated at the shear plane are in the range of 2–10. A more realistic finite element model was developed to characterize the deformation field associated with chip formation in plain orthogonal machining. The numerical results show that most of the grain refinement associated with the formation of ultra-fine grained chip can be attributed to the large shear strain imposed in the deformation zone. It could be feasible to take machining as a method to preparing ultra-fine grained materials and a type of experiment method to study severe plastic deformation.  相似文献   

19.
何振中 《机床与液压》2020,48(18):70-74,92
锯齿形切屑的形成会导致机床振动,使刀具的切削性能下降,降低工件的加工质量,因此需要对其形成机理进行分析,合理优化切削参数,减少锯齿形切屑的形成机率。本文利用ABAQUS软件对钛合金的加工过程进行仿真分析,模拟锯齿形切屑的形成机理,并在不同切削条件下进行仿真和实验研究,讨论切削参数对切屑锯齿化程度的影响。结果表明,随着切削速度和进给量的增加,切屑的锯齿化程度逐渐增大,随着刀具前角的增大,切屑的锯齿化程度逐渐减小。研究结果对提高工件加工质量以及设计工艺参数有一定指导作用。  相似文献   

20.
《Metallography》1987,20(4):465-483
Strain patterns in 4340 steel chips created during turning at speeds between 36 and 440 m/min (119 and 1442 sfpm) are examined metallographically. A new method, based on the grain elongation orientation in the chip, is developed for quantification of local strains created during plane strain deformation in the primary and secondary deformation zones. This method is applied to both continuous and to sawtooth type chips. Strains determined by this method compare well with strains computed from chip thickness measurements, but there appear to be systematic differences. Strain localization is evident in chips formed at the higher cutting speeds. This strain localization does not appear to extend to the rake face side of the chip. The shear angle calculated from the strain in the strain-localized regions compares favorably with the orientation of these regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号