共查询到18条相似文献,搜索用时 78 毫秒
1.
在实际的人脸识别中,给定的训练图像往往存在遮挡和噪声,导致稀疏表示分类(SRC)算法的性能下降。针对上述问题,提出一种基于结构化低秩表示(SLR)和低秩投影的人脸识别方法--SLR_LRP。首先通过SLR对原始训练样本进行低秩分解得到干净的训练样本,根据原始训练样本和恢复得到的干净训练样本得到一个低秩投影矩阵;然后将测试样本投影到该低秩投影矩阵;最后使用SRC对恢复后的测试样本进行分类。在AR人脸库和Extended Yale B人脸库上的实验结果表明,SLR_LRP可以有效处理样本中存在的遮挡和像素破坏。 相似文献
2.
《计算机应用与软件》2019,(9)
针对不同模态的医学图像成像机理不同,对人体信息显示特性不同,融合结果噪声较大,梯度信息不足等问题,提出一种基于低秩表示和非下采样剪切波变换(NSST)的医学图像融合方法。采用低秩表示方法LatentLRR对原始医学图像进行去噪及特征信息提取,得到基础图像;通过NSST对基础图像分解得到高频图像和低频图像;对得到的相应特征信息运用引导滤波的方法进行处理得到融合后的特征图像,对高频图采用局部梯度能量算法进行融合,对低频图采用加权改进拉普拉斯能量和进行融合;采用逆NSST得到基础融合图像;将基础融合图与特征融合图结合得到最终融合图像。与几种经典图像融合算法相比较,该算法在客观评价和主观评价上均表现出优势。 相似文献
3.
视频图像中运动目标检测是机器视觉领域的重要研究内容,旨在将序列图像中的背景和前景进行有效分离。在研究几种典型运动目标检测算法的基础上,提出了一种基于低秩表示动态更新投影的在线运动目标检测算法。采用低秩表示方法对若干连续视频帧进行低秩分解,并将分解所获得的低秩部分对应的左奇异值矩阵的正交补引为投影矩阵;再构建投影模型,拟合出数据的稀疏前景;最后采用视频分段分析法则对投影矩阵进行动态更新,从而保证所分离的背景以及前景的有效性。在Curtain等多个视频数据库上与其他算法进行了对比实验,实验结果表明所提算法具有很好的检测效果,对复杂的运动前景和动态背景的处理表现出很强的鲁棒性。 相似文献
4.
低秩表示(Low-Rank Representation,LRR)在探索数据中的低维子空间结构方面具有良好的效果,近年来引起了人们的广泛关注.然而,传统的LRR方法通常使用欧氏距离来度量样本的相似性,仅考虑相邻样本两两之间的距离信息,对于具有流形结构的数据往往不能反映其固有的几何结构.最近的研究表明,概率激励距离测量(... 相似文献
5.
6.
目前,大部分图像分类算法为了获取较高的性能均需要充分的训练学习过程,然而在实际应用中,往往存在训练样本不足及过拟合等问题。为了避免上述问题出现,在朴素贝叶斯最近邻分类算法的原理框架下,基于非负稀疏编码、低秩稀疏分解以及协作表示提出一种非参数学习的图像分类算法。首先,基于非负稀疏编码和最大值汇聚操作表示图像信息,并构建具有低秩性质的同类训练图像集的局部特征矩阵;其次,采用低秩稀疏分解结合别类标签信息构建两类视觉词典以充分利用同类图像的相关性和差异性;最后基于协作表示表征测试图像并进行分类决策,实验结果验证了所提算法的有效性。 相似文献
7.
针对红外与可见光图像融合过程中出现的细节损失严重等问题,提出一种基于潜在低秩表示与导向滤波的红外与可见光图像融合方法.首先,采用潜在低秩表示方法将源图像分解为低秩图层和显著图层,为了更多地提取低秩图层中细节信息,采用导向滤波将低秩图层分解基础图层和细节图层;并针对基础图层、细节图层和显著图层的特性,分别采用视觉显著度加... 相似文献
8.
9.
目的 有丝分裂细胞核计数是乳腺癌诊断和组织学分级的3个重要评分指标之一,基于深度学习的自动检测方法,可以有效辅助医生进行乳腺病理图像有丝分裂细胞核识别和计数。而当前研究中的公开数据集多为竞赛所用,由举办方联合数据提供者挑选而来,与医院临床应用中所使用的数据存在较大的差异,不利于模型性能及泛化能力的测试验证。针对以上问题,本文发布了来自中国赣州市立医院临床环境的数据集GZMH (Ganzhou municipal hospital)。方法 整理并公开发布的数据集GZMH包含55幅全视野数字切片(whole slide images,WSIs)临床乳腺癌病理图像,提供了用于有丝分裂细胞核目标检测和语义分割研究的两种标注,并由2名高年资医师对3名初级病理医师的标注进行了复核。5种主流目标检测方法和5种经典分割方法在GZMH数据集上进行了训练和测试,检验它们在临床数据集GZMH上的性能。结果 目标检测方法实验结果比较中,SSD (single shot multibox detector)模型取得了最佳的效果,F1分数为0.511;分割方法实验结果比较中,R2U-Net (recurrent rsidual convolutional neural network based on U-Net)性能最佳,F1分数为0.430。所有方法在面对较大规模的临床数据集GZMH时体现的性能都明显低于它们在一些公开数据集上的性能。结论 本文所提出的GZMH数据集能够用于有丝分裂目标检测与语义分割研究任务,且此数据集中的图像更加接近实际的应用场景,在推动乳腺病理图像有丝分裂细胞核分割的研究和临床应用方面具有较大的价值。数据集的在线发布地址为:https://doi.org/10.57760/sciencedb.08547。 相似文献
10.
基于生成对抗网络的低秩图像生成方法 总被引:2,自引:0,他引:2
低秩纹理结构是图像处理领域中具有重要几何意义的结构,通过提取低秩纹理可以对受到各种变换干扰的图像进行有效校正.针对受到各种变换干扰的低秩图像校正问题,利用生成式框架来缓解图像中不具明显低秩特性区域的校正结果不理想的问题,提出了一种非监督式的由图像生成图像的低秩纹理生成对抗网络(Low-rank generative adversarial network,LR-GAN)算法.首先,该算法将传统的无监督学习的低秩纹理映射算法(Transform invariant low-rank textures,TILT)作为引导加入到网络中来辅助判别器,使网络整体达到无监督学习的效果,并且使低秩对抗对在生成网络和判别网络上都能够学习到结构化的低秩表示.其次,为了保证生成的图像既有较高的图像质量又有相对较低的秩,同时考虑到低秩约束条件下的优化问题不易解决(NP难问题),在经过一定阶段TILT的引导后,设计并加入了低秩梯度滤波层来逼近网络的低秩最优解.通过在MNIST,SVHN和FG-NET这三个数据集上的实验,并使用分类算法评估生成的低秩图像质量,结果表明,本文提出的LR-GAN算法均取得了较好的生成质量与识别效果. 相似文献
11.
可变光照和有遮挡人脸识别是人脸识别问题中的一个难点。受到鲁棒主成分分析法(RPCA)和稀疏表示分类法(SRC)的启发,提出一种基于低秩表示(LRR)中稀疏误差图像的可变光照有遮挡人脸识别算法。在训练阶段,利用LRR计算每类人脸低秩数据矩阵,在此基础上求解每类人脸图像低秩映射矩阵,通过各类低秩映射矩阵将未知人脸图像投影得到每类下的低秩数据矩阵和稀疏误差矩阵,为了有效提取稀疏误差图像中的鉴别信息,分别对稀疏误差图像进行边缘检测和平滑度分析,设计了基于两者加权和的类别判据。在Extended Yale B和AR两个数据库上进行了详细的实验分析,实验结果与其它算法相比较有明显提高,证实了所提算法的有效性和鲁棒性。 相似文献
12.
目前的人脸识别算法常常忽视训练过程中噪声的影响,特别是在训练数据和待测数据都受到噪声污染的情况下,识别性能会明显下降。针对含有光照变化、伪装、遮挡及表情变化等较大噪声的人脸识别问题,提出了一种基于低秩子空间投影和Gabor特征的稀疏表示人脸识别算法。该算法首先通过低秩矩阵恢复算法得到训练样本的潜在低秩结构和稀疏误差结构;然后利用主成分分析法找到低秩结构的Gabor特征所在低秩子空间的变换矩阵;再通过变换矩阵将所有样本的Gabor特征向量投影到低秩子空间上,在该低秩子空间上使用稀疏表示分类算法进行最终的分类识别。在Extend Yale B和AR数据库上的实验表明,新算法具有较高的识别率和较强的抗干扰能力。 相似文献
13.
在图嵌入理论框架下,能够较好地揭示数据本质特性的图在一些维数约简方法中起到关键性的作用。基于稀疏表示和低秩表示方法,构建了一种低秩稀疏图,能够同时揭示数据的局部结构信息和全局结构信息。然后,利用图嵌入理论方法使这些特性在线性投影的过程中得以保持不变,从而学习出高维数据有效的低维嵌入。在标准的人脸和手写数字数据集(ORL,Yale,PIE,MNIST)上进行实验,同传统的图嵌入方法比较,结果表明了算法的有效性。 相似文献
14.
针对高维的数据中往往存在非线性、低秩形式和属性冗余等问题,提出一种基于核函数的属性自表达无监督属性选择算法——低秩约束的非线性属性选择算法(LRNFS)。首先,将每一维的属性映射到高维的核空间上,通过核空间上的线性属性选择去实现低维空间上的非线性属性选择;然后,对自表达形式引入偏差项并对系数矩阵进行低秩与稀疏处理;最后,引入核矩阵的系数向量的稀疏正则化因子来实现属性选择。所提算法中用核矩阵来体现其非线性关系,低秩考虑数据的全局信息进行子空间学习,自表达形式确定属性的重要程度。实验结果表明,相比于基于重新调整的线性平方回归(RLSR)半监督特征选择算法,所提算法进行属性选择之后作分类的准确率提升了2.34%。所提算法解决了数据在低维特征空间上线性不可分的问题,提升了属性选择的准确率。 相似文献
15.
典型相关分析(CCA)是一种经典的多特征提取算法,它能够有效地抽取两组特征之间的相关性,现已被广泛应用于模式识别。在含噪声数据情况下,CCA的特征表示性能受到限制。为了使CCA更好地处理含噪声数据,提出一种基于低秩分解的典型相关分析算法——鲁棒典型相关分析(robust canonical correlation analysis,RbCCA)。RbCCA首先对特征集进行低秩分解,得到低秩分量和噪声分量,以此分别构建对应的协方差矩阵。通过最大化低秩分量的相关性,同时最小化噪声分量的相关性来建立判别准则函数,进而求取鉴别投影矢量。在MFEAT手写体数据库、ORL和Yale人脸数据中的实验结果表明,在包含噪声的情况下,RbCCA的识别效果优于现有的典型相关分析方法。 相似文献
16.
基于可变形部件模型DPM的目标检测算法采用方向梯度直方图HOG进行特征表示,由于HOG无法处理模糊的边界而且忽略了平滑的特征区域,从而影响了DPM算法的性能。为了提高DPM的性能,提出了一种基于稀疏表示的可变形部件模型目标检测的方法。该方法利用稀疏编码构建一种新的特征描述子来取代原可变形部件所使用的方向梯度直方图,新的特征描述子能够描述物体更多的信息,对图像中的噪声不敏感。实验结果表明,该方法在PASCAL VOC 2012数据集上提高了原可变形部件模型算法的精度。 相似文献
17.
目的 红外弱小目标检测是红外图像处理领域中难度大且实际意义相当重要的一项研究热点问题,其在侦察预警系统、飞行器跟踪系统与导弹制导系统中都扮演了十分重要的角色。自然背景下的红外图像一般具有较低信噪比,其中背景占据着绝大部分面积,而目标尺寸很小且不具有明显形状和纹理信息,这为红外图像中弱小目标的检测增加了难度。本文提出一种将Facet方向导数特征与稀疏表示相结合的红外弱小目标检测算法。方法 首先利用Facet模型提取原红外图像在0°、90°、45°和-45° 4个方向上的一阶导数特征,然后通过稀疏表示方法,在方向导数信息基础上对图像进行分块逐一处理,利用求解出的稀疏系数和导数图像块的重建残差构建检测数值图,最后分割出小目标所在具体位置。结果 通过对4组不同红外图像序列进行实验验证,绘制了检测率与虚警率ROC曲线图。从结果可以看出,本文算法相较于对比算法在小目标检测中具有较高检测率。结论 本文算法将Facet方向导数特征与稀疏表示相结合,在红外弱小目标检测上具有较高检测精度和较强抗噪声干扰能力,相比于传统检测算法具有一定优势,同时可根据不同检测背景训练出相应背景字典,从而得到较好检测效果,在实际工程应用中具有良好针对性。 相似文献
18.
目的 复杂背景中的红外小目标检测易受背景杂波与噪声的干扰,直接利用现有的低秩约束与稀疏表示联合模型存在准确率低、虚警率高及检测速度慢等不足。为了解决这些问题,提出一种基于多尺度红外超像素图像模型的小目标检测方法。方法 首先,采用超像素方法分割原始红外图像,得到无重叠区域的超像素图像,充分利用红外图像的局部空间相关性;然后,引入多尺度理论,融合多个不同尺度下检测的目标图像,增强该方法检测不同尺寸目标的稳健性。结果 针对多幅不同场景下的红外小目标图像进行了实验验证,并选取信杂比增益、背景抑制因子及检测时间作为定量评价指标,以此衡量背景抑制效果及算法运行速度。大量实验结果表明,与Top-Hat、Max-Median、二维最小均方、局部显著性图、红外块图像、加权红外块图像等方法相比,本文方法能有效地去除各种干扰,在背景抑制方面具有更好的效果,且所得背景抑制因子为其他方法的数十倍;与同类方法相比,红外超像素图像模型减少了至少78.2%的检测时间。结论 本文将超像素图像分割与多尺度理论引入低秩约束与稀疏表示联合模型,能够取得更好的背景抑制效果,并且可以适应不同大小目标的检测,实现复杂背景中红外小目标的准确检测。 相似文献