共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
红外图像小目标检测技术,是红外搜索与跟踪系统的一项核心技术。本文提出了一种新的红外图像小目标分割算法,采用背景抑制及双窗口自适应门限分割等技术检测目标,分析了算法的实时检测能力,并给出实物平台下的检测实例。大量的实验结果表明,此新算法能取得较好的小目标分割效果。 相似文献
3.
4.
5.
6.
7.
8.
9.
在红外成像探测系统中,对红外图像背景进行有效的抑制是准确检测出弱小目标的前提条件.基于目标在空域局部灰度稳定和时域运动连续的约束,提出了一种基于时空域滤波的红外弱小目标背景抑制新方法.首先,利用引导滤波保存图像细节和时域偏微分方程提取图像中突变区域的优势,实现对图像空域与时域中平稳和强起伏不同特征复杂背景进行抑制处理;然后,将时空域背景抑制结果利用相与操作算子处理完成对高度类似弱小目标信号的剔除;最后,为恢复前期抑制结果中丢失的目标信息,利用时空域融合结果作为引导图像进行进一步优化处理,得到最终背景抑制结果.仿真实验采用两组低信杂比运动弱小目标红外图像序列进行方法验证,并将该方法与几种背景抑制方法进行了比较,实验结果表明:该方法无论从主观视觉还是客观评价指标上均优于其他几种方法. 相似文献
10.
为检测强云杂波背景中的红外弱小运动目标,结合反锐化掩模理论,提出了一种基于曲线波变换的多尺度反锐化掩模红外图像云层背景抑制新方法。首先,根据红外目标和背景杂波的特性,采用二代曲线波变换对图像进行多尺度、多方向分解,提取图像的多尺度和方向细节特征,然后,根据目标和背景杂波子带系数的差异,通过应用反锐化掩模理论调整分解后的各子带系数,从而将红外图像中弱小目标信号和背景杂波分离,达到抑制背,景的目的。实验结果显示,与最大中值(MMed)和二维最小均方误差(TDLMS)方法比较,该方法对信杂比较低的红外弱小目标复杂云层背景从主观视觉和数值指标都具有良好抑制效果。 相似文献
11.
复杂背景下的红外图像通常存在信噪比低、邻近像素灰度变化不明显以及易被杂波信号和噪声干扰的特点,导致红外小目标检测困难。为解决上述问题,提出一种基于特征显著性融合的红外小目标检测算法。首先,在空间域中利用目标与其局部背景灰度差异来计算得到灰度显著图,在频域中结合谱残差计算得到背景抑制后的频域显著图;其次,将灰度显著图和频域显著图归一化后通过哈达玛乘积相互融合;最后,通过自适应阈值分割并使用Unger滤波器剔除较小的噪声点,从而提取出目标区域。实验结果表明,所提算法对图像的信噪比有了数十倍的提升,对背景抑制效果显著,并有着检测率高和虚警率低的优点,是一种有效的小目标检测算法。 相似文献
12.
13.
低信噪比条件下的红外弱小目标检测问题一直是近些年来国内外学者研究的一个热门课题。针对复杂背景下红外图像弱小目标检测困难、信噪比低的问题,越来越多的新方法不断被提出。更好的实时性,更高的检测概率,更低的虚警率成为了研究者们追求的目标,实时、鲁棒、通用成为了红外弱小目标检测信号处理算法的核心要求。本文梳理了红外弱小目标检测的常用方法以及其技术发展,在介绍一些传统算法发展的基础上,重点介绍了红外弱小目标检测的几类典型算法的原理、发展及其优化算法,为后续红外弱小目标检测的研究提供了便利。 相似文献
14.
基于背景抑制和特征点检测的目标检测算法 总被引:1,自引:0,他引:1
空域远距离红外目标探测系统中,飞行目标多表现为点状或面状的小目标,像素数少,且常伴有低空地面物体的干扰.根据空域和地面在梯度变化上的不同和目标本身的特性,提出了一种基于地面背景抑制和特征点检测的红外空中目标检测算法.分析了地面和空域在梯度变化上的特点,根据梯度变化大的像素的整体统计信息划分了空域和地面在图像中的分布,再通过特征点检测实现了候选红外飞行目标的检测.该算法适用于纯空域和低空背景,经过对实际采集的大量红外图像的仿真表明,本文提出的算法具有很强的实用性和鲁棒性. 相似文献
15.
虚警抑制是红外小目标检测系统中的重要任务之一,在复杂场景下,存在着大量与目标灰度特征相似的干扰易被识别为虚警,现有方法难以准确、高效地区分目标并滤除虚警。本文提出了一种基于目标相对运动推理法的高鲁棒性红外虚警抑制方法,通过对上报目标进行运动信息提取,并分析目标间的相对运动关系,以构建运动信息匹配表,最终根据运动信息匹配结果进行投票信息选择,以滤除上报信息中的虚警。在8种包含虚警的复杂场景下进行了实验,包括背景相对相机静止目标移动的场景、目标相对相机静止虚警移动的场景、相机画面剧烈抖动的场景以及所有检测目标均为虚警的场景。实验结果表明,本文提出的方法在以上场景中都能够准确滤除虚警,同时可以在所有候选目标均为虚警的场景下保持虚警率为0。基于相对运动推理的方法可以实现复杂场景中的虚警抑制,在不同场景中表现稳定、快捷、滤除率高。 相似文献
16.
针对复杂背景和低信杂比条件下的红外弱小目标检测难题,提出了一种基于局部对比度机制的红外弱小目标检测方法。该方法提出了一个包含中心层、中间层和最外层的3层窗口,可以使用单尺度计算完成不同尺度弱小目标的检测。首先,对中心层引入匹配滤波思想,有针对性地增强真实目标;同时,提出最接近滤波原则,对最外层进行背景估计,以缓解目标靠近边缘时的检测难题;然后,在目标增强结果与背景估计结果之间进行比差联合的对比度计算,达到同时增强目标和抑制背景的目的;最后,通过自适应阈值分割,提取真实目标。实验结果表明,相比现有算法而言,该算法可更好地增强目标、抑制复杂背景,且原理简洁易实现,可有效减少运算量。 相似文献
17.
在超远距离红外目标探测中,由于杂散光、探测器热传导及闪元盲元等复杂干扰,红外图像的背景常表现为非均匀性。同时,目标成像尺寸小,缺乏明显的形状和纹理特征,增加了检测与识别的难度。传统的特征提取方法易出现大量虚警,深度学习方法在特征提取方面具有优势,但在复杂背景干扰下训练难度较大。文中将计算机视觉领域中的背景重建问题与红外图像弱小目标检测任务相结合,提出了一种基于复杂背景智能抑制的红外弱小目标检测方法。该方法采用编码器-解码器架构设计了红外场景优化编解码背景抑制网络模型,引入多级融合机制和残差融合模块以实现多尺度特征提取和多层次特征融合,并提出感知一致性损失函数提高背景重建的鲁棒性。通过背景残差抵消策略有效实现背景抑制,最终结合全局阈值分割完成弱小目标检测任务。实验结果表明,与对比方法相比,文中方法在抑制背景方面背景标准差最高降幅达43.41%,目标信噪比最高提升至
18.
红外小目标的模板提取及检测技术研究 总被引:2,自引:0,他引:2
提出了一种基于特定目标形状模板的红外小目标检测算法。该方法首先通过低通滤波、背景差分法以及高通滤波得到小目标模板。然后,利用目标模板与红外序列的卷积运算,获取一个较为精确的背景图形。最后,通过利用背景差分法,得到最终的红外小目标图像。计算机仿真结果表明,该方法能够较好的检测出小目标,算法步骤简单且易于实现,在改善图像质量、提高图像信杂比增益等方面具有良好的性能。 相似文献