共查询到19条相似文献,搜索用时 73 毫秒
1.
本文提出一种轻量级视觉手势识别系统,在现有手部关键点提取方案基础上,设计一个多层神经网络将21个手部关键点坐标转化为静态手势类别.多层神经网络在多个图像数据集所提取的手部关键点数据上均有良好表现,还能够一定程度上抑制将非目标手势分类识别为目标手势,减少实际应用中手势动态变化过程引起的错误识别.利用开源神经网络推理框架,... 相似文献
2.
3.
4.
一种用于PCA与MCA的神经网络学习算法 总被引:5,自引:0,他引:5
主元分析(PCA)和次元分析(MCA)是用于特征提取、数据压缩、频率估计、曲线拟合等信号处理的基本技术,以神经网络来实现PCA和MCA是当今研究的一大热点,相关矩阵R的特征值重数不为1时的主、次元分析则是其中一大难题,本文提出了一种新的学习算法,使得在输入数据的相关矩阵含多重特征值时,网络权重矢量亦收敛于相关矩阵的单位正交特征矢量。 相似文献
5.
7.
8.
9.
手势识别是人机交互,智能语义识别和远程人机 交流领域的热门研究课题。目前基于 视觉的手势识别问题仍是研究的难点,在多变背景下的手势姿态识别仍然存在较大问题。近 年来,随着深度神经网络技术的快速发展,利用网络自主学习的方法来提取手势姿态有关特 征得到了广泛关注。由于卷积神经网络具有较强的学习能力和个体特征的表达能力,本文针 对传统手势识别算法精度低,鲁棒性差的问题,提出了基于卷积神经网络的TensorFlow框架 下加入扁平卷积模块的FD-CNN网络手势识别算法。在预处理数据集后,基于FD-CNN网络的 手 势识别方法可以直接将预处理后的图像输入网络进行训练,最终输出测试结果的识别精度为 99.0%。与传统方法和经典卷积神经网络方法相比,本文方法提高了 网 络系统对样本数据的多样性和复杂性的有效识别,具有较高的识别率和较好的鲁棒性效果。 相似文献
10.
11.
介绍一种新的DCT计算方法,它以DHT为基础,利用Hopfield神经网络的并行特征来提高DCT的计算性能。该方法与现有方法比较,复杂度降低,乘法运算量为(2N-1),加法运算量为3N-2,并且适合任意长度的DCT计算,因而在图像处理中具有较好的应用前景。 相似文献
12.
本文提出一种用于大类别模式识别系统的改进的自组织聚类方法,采用这种方法把3755种多体印刷汉字聚类为几午个子集。聚类正确率优于98%。 相似文献
13.
本文提出了一种基于递归正交最小二乘的径向基函数(RBF)网络人脸识别算法,该算法首先使用主成分分析(PCA)提取输入图像特征,将提取的特征作为RBF网络的输入进行识别,在求取网络权值时采用递归正交最小二乘(ROLS)算法。实验表明,该算法能明显地缩短训练时间同时具有较高的识别率。 相似文献
14.
通过对独立分量分析(ICA)理论的研究以及对人机交互手势特征的分析,提出了一种基于ICA的静态手势特征提取与识别的方法。用ICA方法分别提取各类静态手势图像的独立分量特征(ICF),构成手势图像的独立基函数空间,对手势图像采用独立分量的最小二乘意义下的表示,结合系统的判别阈值实现对手势的分类识别。系统采用4类手势,共计80幅图像,对方法的有效性进行了检测。实验结果表明,这一方法不仅可行,而且能够获得满意的识别结果。 相似文献
15.
本文提出了一种可控学习的两级多层神经网络模型,由此设计出一种基于高阶矩匹配的神经网络参数估计器;并对该神经网络模型的学习算法进行了研究,提出了一种自适应并行学习算法。仿真结果表明,这种利用神经网络进行模型参数估计的方法是可行的。 相似文献
16.
人工神经元网络的智能神经元模型 总被引:4,自引:0,他引:4
本文在仔细分析神经网络知识存储方式的基础上,指出了现有存储方式的严重不足;由大量具有简单处理能力的神经元组成的神经网络,虽然具有一定的智能处理能力,但由于每个神经元不具备复杂的处理能力,故必然导致由此构成的网络存在着诸如局部极小,收敛速度缓慢、推广能力差等缺点,尤其是难于用于实时处理系统,大大限制了神经网络的应用范围。为此,本文提出了一种新的智能型神经元模型并将它与常用的神经元模型进行了比较,后续 相似文献
17.
18.
19.
语音识别系统在语音识别中自我判定识别结果,并从错误中自动获取经验改正错误实现知识的自我完善具有重要意义。采用人工神经网络可以有效学习与更新知识,人工神经网络与语音识别结果自动检验方法结合实现一种新的有效学习与更新系统。在该系统中采用基于LEA判别法的梯度牛顿有效结合神经网络快速学习方法。该系统实现在语音识别实践中能够自学习并提高识别率,具有一定的智能。文中给出系统原理图和实验结果。 相似文献