首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Replication checkpoint enforced by kinases Cds1 and Chk1   总被引:1,自引:0,他引:1  
Cdc2, the kinase that induces mitosis, is regulated by checkpoints that couple mitosis to the completion of DNA replication and repair. The repair checkpoint kinase Chk1 regulates Cdc25, a phosphatase that activates Cdc2. Effectors of the replication checkpoint evoked by hydroxyurea (HU) are unknown. Treatment of fission yeast with HU stimulated the kinase Cds1, which appears to phosphorylate the kinase Wee1, an inhibitor of Cdc2. The protein kinase Cds1 was also required for a large HU-induced increase in the amount of Mik1, a second inhibitor of Cdc2. HU-induced arrest of cell division was abolished in cds1 chk1 cells. Thus, Cds1 and Chk1 appear to jointly enforce the replication checkpoint.  相似文献   

2.
We have analyzed the role of the protein kinase Chk1 in checkpoint control by using cell-free extracts from Xenopus eggs. Recombinant Xenopus Chk1 (Xchk1) phosphorylates the mitotic inducer Cdc25 in vitro on multiple sites including Ser-287. The Xchk1-catalyzed phosphorylation of Cdc25 on Ser-287 is sufficient to confer the binding of 14-3-3 proteins. Egg extracts from which Xchk1 has been removed by immunodepletion are strongly but not totally compromised in their ability to undergo a cell cycle delay in response to the presence of unreplicated DNA. Cdc25 in Xchk1-depleted extracts remains bound to 14-3-3 due to the action of a distinct Ser-287-specific kinase in addition to Xchk1. Xchk1 is highly phosphorylated in the presence of unreplicated or damaged DNA, and this phosphorylation is abolished by caffeine, an agent which attenuates checkpoint control. The checkpoint response to unreplicated DNA in this system involves both caffeine-sensitive and caffeine-insensitive steps. Our results indicate that caffeine disrupts the checkpoint pathway containing Xchk1.  相似文献   

3.
DNA damage activates a cell-cycle checkpoint that prevents mitosis while DNA repair is under way. The protein Chk1 enforces this checkpoint by phosphorylating the mitotic inducer Cdc25. Phosphorylation of Cdc25 by Chk1 creates a binding site in Cdc25 for 14-3-3 proteins, but it is not known how 14-3-3 proteins regulate Cdc25. Rad24 is a 14-3-3 protein that is important in the DNA-damage checkpoint in fission yeast. Here we show that Rad24 controls the intracellular distribution of Cdc25. Elimination of Rad24 causes nuclear accumulation of Cdc25. Activation of the DNA-damage checkpoint causes the net nuclear export of Cdc25 by a process that requires Chk1, Rad24 and nuclear-export machinery. Mutation of a putative nuclear-export signal in Rad24 impairs the nuclear exclusion of Rad24, the damage-induced nuclear export of Cdc25 and the damage checkpoint. Thus, Rad24 appears to function as an attachable nuclear-export signal that enhances the nuclear export of Cdc25 in response to DNA damage.  相似文献   

4.
Checkpoints maintain the order of cell-cycle events. At G2/M, a checkpoint blocks mitosis in response to damaged or unreplicated DNA. There are significant differences in the checkpoint responses to damaged DNA and unreplicated DNA, although many of the same genes are involved in both responses. To identify new genes that function specifically in the DNA replication checkpoint pathway, we searched for high-copy suppressors of overproducer of Cdc25p (OPcdc25(+)), which lacks a DNA replication checkpoint. Two classes of suppressors were isolated. One class includes a new gene encoding a putative DEAD box helicase, suppressor of uncontrolled mitosis (sum3(+)). This gene negatively regulates the cell-cycle response to stress when overexpressed and restores the checkpoint response by a mechanism that is independent of Cdc2p tyrosine phosphorylation. The second class includes chk1(+) and the two Schizosaccharomyces pombe 14-3-3 genes, rad24(+) and rad25(+), which appear to suppress the checkpoint defect by inhibiting Cdc25p. We show that rad24Delta mutants are defective in the checkpoint response to the DNA replication inhibitor hydroxyurea at 37 degrees and that cds1Delta rad24Delta mutants, like cds1Delta chk1Delta mutants, are entirely checkpoint deficient at 29 degrees. These results suggest that chk1(+) and rad24(+) may function redundantly with cds1(+) in the checkpoint response to unreplicated DNA.  相似文献   

5.
In response to DNA damage, mammalian cells prevent cell cycle progression through the control of critical cell cycle regulators. A human gene was identified that encodes the protein Chk1, a homolog of the Schizosaccharomyces pombe Chk1 protein kinase, which is required for the DNA damage checkpoint. Human Chk1 protein was modified in response to DNA damage. In vitro Chk1 bound to and phosphorylated the dual-specificity protein phosphatases Cdc25A, Cdc25B, and Cdc25C, which control cell cycle transitions by dephosphorylating cyclin-dependent kinases. Chk1 phosphorylates Cdc25C on serine-216. As shown in an accompanying paper by Peng et al. in this issue, serine-216 phosphorylation creates a binding site for 14-3-3 protein and inhibits function of the phosphatase. These results suggest a model whereby in response to DNA damage, Chk1 phosphorylates and inhibits Cdc25C, thus preventing activation of the Cdc2-cyclin B complex and mitotic entry.  相似文献   

6.
Eukaryotic cells respond to DNA damage and S phase replication blocks by arresting cell-cycle progression through the DNA structure checkpoint pathways. In Schizosaccharomyces pombe, the Chk1 kinase is essential for mitotic arrest and is phosphorylated after DNA damage. During S phase, the Cds1 kinase is activated in response to DNA damage and DNA replication blocks. The response of both Chk1 and Cds1 requires the six 'checkpoint Rad' proteins (Rad1, Rad3, Rad9, Rad17, Rad26 and Hus1). We demonstrate that DNA damage-dependent phosphorylation of Chk1 is also cell-cycle specific, occurring primarily in late S phase and G2, but not during M/G1 or early S phase. We have also isolated and characterized a temperature-sensitive allele of rad3. Rad3 functions differently depending on which checkpoint pathway is activated. Following DNA damage, rad3 is required to initiate but not maintain the Chk1 response. When DNA replication is inhibited, rad3 is required for both initiation and maintenance of the Cds1 response. We have identified a strong genetic interaction between rad3 and cds1, and biochemical evidence shows a physical interaction is possible between Rad3 and Cds1, and between Rad3 and Chk1 in vitro. Together, our results highlight the cell-cycle specificity of the DNA structure-dependent checkpoint response and identify distinct roles for Rad3 in the different checkpoint responses. Keywords: ATM/ATR/cell-cycle checkpoints/Chk1/Rad3  相似文献   

7.
Cdc25, the dual-specificity phosphatase that dephosphorylates the Cdc2-cyclin B complex at mitosis, is highly regulated during the cell cycle. In Xenopus egg extracts, Cdc25 is associated with two isoforms of the 14-3-3 protein. Cdc25 is complexed primarily with 14-3-3epsilon and to a lesser extent with 14-3-3zeta. The association of these 14-3-3 proteins with Cdc25 varies dramatically during the cell cycle: binding is high during interphase but virtually absent at mitosis. Interaction with 14-3-3 is mediated by phosphorylation of Xenopus Cdc25 at Ser-287, which resides in a consensus 14-3-3 binding site. Recombinant Cdc25 with a point mutation at this residue (Cdc25-S287A) is incapable of binding to 14-3-3. Addition of the Cdc25-S287A mutant to Xenopus egg extracts accelerates mitosis and overrides checkpoint-mediated arrests of mitotic entry due to the presence of unreplicated and damaged DNA. These findings indicate that 14-3-3 proteins act as negative regulators of Cdc25 in controlling the G2-M transition.  相似文献   

8.
The spindle checkpoint regulates the cell division cycle by keeping cells with defective spindles from leaving mitosis. In the two-hybrid system, three proteins that are components of the checkpoint, Mad1, Mad2, and Mad3, were shown to interact with Cdc20, a protein required for exit from mitosis. Mad2 and Mad3 coprecipitated with Cdc20 at all stages of the cell cycle. The binding of Mad2 depended on Mad1 and that of Mad3 on Mad1 and Mad2. Overexpression of Cdc20 allowed cells with a depolymerized spindle or damaged DNA to leave mitosis but did not overcome the arrest caused by unreplicated DNA. Mutants in Cdc20 that were resistant to the spindle checkpoint no longer bound Mad proteins, suggesting that Cdc20 is the target of the spindle checkpoint.  相似文献   

9.
Checkpoints that respond to DNA structure changes were originally defined by the inability of yeast mutants to prevent mitosis following DNA damage or S-phase arrest. Genetic analysis has subsequently identified subpathways of the DNA structure checkpoints, including the reversible arrest of DNA synthesis. Here, we show that the Cds1 kinase is required to slow S phase in the presence of DNA-damaging agents. Cds1 is phosphorylated and activated by S-phase arrest and activated by DNA damage during S phase, but not during G1 or G2. Activation of Cds1 during S phase is dependent on all six checkpoint Rad proteins, and Cds1 interacts both genetically and physically with Rad26. Unlike its Saccharomyces cerevisiae counterpart Rad53, Cds1 is not required for the mitotic arrest checkpoints and, thus, defines an S-phase specific subpathway of the checkpoint response. We propose a model for the DNA structure checkpoints that offers a new perspective on the function of the DNA structure checkpoint proteins. This model suggests that an intrinsic mechanism linking S phase and mitosis may function independently of the known checkpoint proteins.  相似文献   

10.
The DNA replication checkpoint inhibits mitosis in cells that are unable to replicate their DNA, as when nucleotide biosynthesis is inhibited by hydroxyurea. In the fission yeast Schizosaccharomyces pombe, genetic evidence suggests that this checkpoint involves the inhibition of Cdc2 activity through the phosphorylation of tyrosine-15. On the contrary, a recent biochemical study indicated that Cdc2 is in an activated state during a replication checkpoint, suggesting that phosphorylation of Cdc2 on tyrosine-15 is not part of the replication checkpoint mechanism. We have undertaken biochemical and genetic studies to resolve this controversy. We report that the DNA replication checkpoint in S. pombe is abrogated in cells that carry the allele cdc2-Y15F, expressing an unphosphorylatable form of Cdc2. Furthermore, Cdc2 isolated from replication checkpoint-arrested cells can be activated in vitro by Cdc25, the tyrosine phosphatase responsible for dephosphorylating Cdc2 in vivo, to the same extent as Cdc2 isolated from cdc25ts-blocked cells, indicating that hydroxyurea treatment causes Cdc2 activity to be maintained at a low level that is insufficient to induce mitosis. These studies show that inhibitory tyrosine-15 phosphorylation of Cdc2 is essential for the DNA replication checkpoint and suggests that Cdc25, and/or one or both of Wee1 and Mik1, the tyrosine kinases that phosphorylate Cdc2, are regulated by the replication checkpoint.  相似文献   

11.
Fission yeast Cut5/Rad4 plays a unique role in the genome maintenance as it is required for replication, replication checkpoint, and normal UV sensitivity. It is unknown, however, how Cut5 protein is linked to other checkpoint proteins, and what part it plays in replication and UV sensitivity. Here we report that Cut5 interacts with a novel checkpoint protein Crb2 and that this interaction is needed for normal genome maintenance. The carboxyl terminus of Crb2 resembles yeast Rad9 and human 53BP1 and BRCA1. Crb2 is required for checkpoint arrests induced by irradiation and polymerase mutations, but not for those induced by inhibited nucleotide supply. Upon UV damage, Crb2 is transiently modified, probably phosphorylated, with a similar timing of phosphorylation in Chk1 kinase, which is reported to restrain Cdc2 activation. Crb2 modification requires other damage-sensing checkpoint proteins but not Chk1, suggesting that Crb2 acts at the upstream of Chk1. The modified Crb2 exists as a slowly sedimenting form, whereas Crb2 in undamaged cells is in a rapidly sedimenting structure. Cut5 and Crb2 interact with Chk1 in a two-hybrid system. Moreover, moderate overexpression of Chk1 suppresses the phenotypes of cut5 and crb2 mutants. Cut5, Crb2, and Chk1 thus may form a checkpoint sensor-transmitter pathway to arrest the cell cycle.  相似文献   

12.
The dependence of mitosis on the completion of the period of DNA replication in the cell cycle [synthesis (S) phase] ensures that chromosome segregation occurs only after the genome has been fully duplicated. A key negative regulator of mitosis, the protein kinase Wee1, was degraded in a Cdc34-dependent fashion in Xenopus egg extracts. This proteolysis event was required for a timely entrance into mitosis and was inhibited when DNA replication was blocked. Therefore, the DNA replication checkpoint can prevent mitosis by suppressing the proteolysis of Wee1 during S phase.  相似文献   

13.
We have identified an S-phase DNA damage checkpoint in Schizosaccharomyces pombe. This checkpoint is dependent on Rad3, the S. pombe homolog of the mammalian ATM/ATR checkpoint proteins, and Cds1. Cds1 had previously been believed to be involved only in the replication checkpoint. The requirement of Cds1 in the DNA damage checkpoint suggests that Cds1 may be a general target of S-phase checkpoints. Unlike other checkpoints, the S. pombe S-phase DNA damage checkpoint discriminates between different types of damage. UV-irradiation, which causes base modification that can be repaired during G1 and S-phase, invokes the checkpoint, while gamma-irradiation, which causes double-stranded breaks that cannot be repaired by a haploid cell if induced before replication, does not invoke the checkpoint. Because the same genes are required to respond to UV- and gamma-irradiation during G2, this discrimination may represent an active suppression of the gamma response during S-phase.  相似文献   

14.
We have previously demonstrated that UCN-01, a potent protein kinase inhibitor currently in phase I clinical trials for cancer treatment, abrogates G2 arrest following DNA damage. Here we used murine FT210 cells, which contain temperature-sensitive Cdc2 mutations, to determine if UCN-01 abrogates G2 arrest through a Cdc2-dependent pathway. We report that UCN-01 cannot induce mitosis in DNA-damaged FT210 cells at the non-permissive temperature for Cdc2 function. Failure to abrogate G2 arrest was not due to UCN-01-inactivation at the elevated temperature because parental FM3A cells, which have wild-type Cdc2, were sensitive to UCN-01-induced G2 checkpoint abrogation. Having established that UCN-01 acted through Cdc2, we next assessed UCN-01's effect on the Cdc2-inhibitory kinase, Wee1Hu, and the Cdc2-activating phosphatase, Cdc25C. We found that Wee1Hu was indeed inactivated in UCN-01-treated cells, possibly just prior to Cdc2 activation and entry of DNA-damaged cells into mitosis. This inhibition appeared, however, to be a consequence of a further upstream action since in vitro studies revealed purified Wee1Hu was relatively resistant to UCN-01-inhibition. Consistent with such an upstream action, UCN-01 also promoted the hyperphosphorylation (activation) of Cdc25C in DNA-damaged cells. Our results suggest that UCN-01 abrogates G2 checkpoint function through inhibition of a kinase residing upstream of Cdc2, Wee1Hu, and Cdc25C, and that changes observed in these mitotic regulators are downstream consequences of UCN-01's actions.  相似文献   

15.
Previous work has established that activation of Mos, Mek, and p42 mitogen-activated protein (MAP) kinase can trigger release from G2-phase arrest in Xenopus oocytes and oocyte extracts and can cause Xenopus embryos and extracts to arrest in mitosis. Herein we have found that activation of the MAP kinase cascade can also bring about an interphase arrest in cycling extracts. Activation of the cascade early in the cycle was found to bring about the interphase arrest, which was characterized by an intact nuclear envelope, partially condensed chromatin, and interphase levels of H1 kinase activity, whereas activation of the cascade just before mitosis brought about the mitotic arrest, with a dissolved nuclear envelope, condensed chromatin, and high levels of H1 kinase activity. Early MAP kinase activation did not interfere significantly with DNA replication, cyclin synthesis, or association of cyclins with Cdc2, but it did prevent hyperphosphorylation of Cdc25 and Wee1 and activation of Cdc2/cyclin complexes. Thus, the extracts were arrested in a G2-like state, unable to activate Cdc2/cyclin complexes. The MAP kinase-induced G2 arrest appeared not to be related to the DNA replication checkpoint and not to be mediated through inhibition of Cdk2/cyclin E; evidently a novel mechanism underlies this arrest. Finally, we found that by delaying the inactivation of MAP kinase during release of a cytostatic factor-arrested extract from its arrest state, we could delay the subsequent entry into mitosis. This finding suggests that it is the persistence of activated MAP kinase after fertilization that allows the occurrence of a G2-phase during the first mitotic cell cycle.  相似文献   

16.
We have identified thermosensitive mutants of five Schizosaccharomyces pombe replication proteins that have a mutator phenotype at their semipermissive temperatures. Allele-specific mutants of DNA polymerase delta (poldelta) and mutants of Polalpha, two Poldelta subunits, and ligase exhibited increased rates of deletion of sequences flanked by short direct repeats. Deletion of rad2(+), which encodes a nuclease involved in processing Okazaki fragments, caused an increased rate of duplication of sequences flanked by short direct repeats. The deletion mutation rates of all the thermosensitive replication mutators decreased in a rad2Delta background, suggesting that deletion formation requires Rad2 function. The duplication mutation rate of rad2Delta was also reduced in a thermosensitive polymerase background, but not in a ligase mutator background, which suggests that formation of duplication mutations requires normal DNA polymerization. Thus, although the deletion and duplication mutator phenotypes are distinct, their mutational mechanisms are interdependent. The deletion and duplication replication mutators all exhibited decreased viability in combination with deletion of a checkpoint Rad protein, Rad26. Interestingly, deletion of Cds1, a protein kinase functioning in a checkpoint Rad-mediated reversible S-phase arrest pathway, decreased the viability and exacerbated the mutation rate only in the thermosensitive deletion replication mutators but had no effect on rad2Delta. These findings suggest that aberrant replication caused by allele-specific mutations of these replication proteins can accumulate potentially mutagenic DNA structures. The checkpoint Rad-mediated pathways monitor and signal the aberrant replication in both the deletion and duplication mutators, while Cds1 mediates recovery from aberrant replication and prevents formation of deletion mutations specifically in the thermosensitive deletion replication mutators.  相似文献   

17.
Members of the Cdc7 family of protein kinases are essential for the initiation of DNA replication in all eukaryotes, but their precise biochemical function is unclear. We have purified the fission yeast Cdc7 homologue Hsk1 approximately 30,000-fold, to near homogeneity. Purified Hsk1 has protein kinase activity on several substrates and is capable of autophosphorylation. Point mutations in highly conserved regions of Hsk1 inactivate the kinase in vitro and in vivo. Overproduction of two of the mutant hsk1 alleles blocks initiation of DNA replication and deranges the mitotic checkpoint, a phenotype consistent with a role for Hsk1 in the early stages of initiation. The purified Hsk1 kinase can be separated into two active forms, a Hsk1 monomer and a heterodimer consisting of Hsk1 complexed with a co-purifying polypeptide, Dfp1. Association with Dfp1 stimulates phosphorylation of exogenous substrates but has little effect on autokinase activity. We have identified Dfp1 as the fission yeast homologue of budding yeast Dbf4. Purified Hsk1 phosphorylates the Cdc19 (Mcm2) subunit of the six-member minichromosome maintenance protein complex purified from fission yeast. Since minichromosome maintenance proteins have been implicated in the initiation of DNA replication, the essential function of Hsk1 at the G1/S transition may be mediated by phosphorylation of Cdc19. Furthermore, the phosphorylation of critical substrates by Hsk1 kinase is likely regulated by association with a Dbf4-like co-factor.  相似文献   

18.
The fission yeast gene cdc18(+) is required for entry into S phase and for coupling mitosis to the successful completion of S phase. Cdc18 is a highly unstable protein that is expressed only once per cell cycle at the G1/S boundary. Overexpression of Cdc18 causes a mitotic delay and reinitiation of DNA replication, suggesting that the inactivation of Cdc18 plays a role in preventing rereplication within a given cell cycle. In this paper, we present evidence that Cdc18 is associated with active cyclin-dependent kinase in vivo. We have expressed Cdc18 as a glutathione S-transferase fusion in fission yeast and demonstrated that the fusion protein is functional in vivo. We find that the Cdc18 fusion protein copurifies with a kinase activity capable of phosphorylating histone H1 and Cdc18. The activity was identified by a variety of methods as the cyclin-dependent kinase containing the product of the cdc2(+) gene. The amino terminus of Cdc18 is required for association with cyclin-dependent kinase, but the association does not require the consensus cyclin-dependent kinase phosphorylation sites in this region. Additionally, both G1/S and mitotic forms of cyclin-dependent kinase phosphorylate and interact with Cdc18. These interactions between Cdc18 and cyclin-dependent kinases suggest mechanisms by which cyclin-dependent kinases could activate the initiation of DNA replication and could prevent rereplication.  相似文献   

19.
Checkpoints maintain the dependency relationships between discrete events in the cell cycle (for example, ensuring mitosis does not occur before DNA replication is complete). In Schizosaccharomyces pombe, mitotic checkpoints monitor DNA synthesis and the presence of DNA damage. The replication-dependent mitotic checkpoint prevents mitosis by inactivating p34cdc2 kinase. The mechanism by which the DNA damage checkpoint interacts with the mitotic machinery is distinct from that used by the replication checkpoint. The activity of p34cdc2 is controlled, in part, by the wee1 protein kinase, which inactivates cdc2 through phosphorylation at tyrosine-15 (ref. 7). Here we report normal mitotic arrest after DNA damage in S. pombe cells in which the wee1 gene is defective or missing. We suggest why these findings contradict a recent report which suggested that the wee1 gene product was required for DNA damage-dependent mitotic arrest.  相似文献   

20.
SV40 large T antigen (T) inactivates the tumor suppressor proteins p53 and pRb, and can induce cells to enter DNA replication at inappropriate times. We show here that T also compromises three cell cycle checkpoints that regulate the entry into and exit from mitosis. Human diploid fibroblasts infected with a retrovirus expressing T displayed an attenuated radiation-induced mitotic delay, were more susceptible to chemical-induced uncoupling of mitosis from the completion of DNA replication, and were more likely to exit mitosis and rereplicate their DNA when mitotic spindle assembly was inhibited. Consistent with altered mitotic checkpoint control, cells expressing T displayed elevated protein levels and/or associated activities of the mitotic regulatory proteins cyclin A, cyclin B, Cdc25C and p34(cdc2). These changes in mitotic control were evident within 5-10 population doublings after retroviral infection, indicating a direct effect of T expression. Cells acutely infected with the T-expressing retrovirus suffered numerical and structural chromosome aberrations, including increases in aneuploidy, dicentric chromosomes, chromatid exchanges and chromosome breaks and gaps. These findings indicate that T rapidly disrupts mitotic checkpoints that help maintain genomic stability, and suggest mechanisms by which T induces chromosome aberrations and promotes the immortalization and neoplastic transformation of human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号