首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
在地形复杂的地区,输送成品油时难免会经过高差、停输、下坡等不同工况的路径,而管道的倾角、停输的时间对下坡管道的混油特性有很大影响。借助于CFD的多相流模型,以三维倾斜管道为研究对象,分别就停输时间、倾角、输送顺序对混油特性的影响进行了数值模拟。研究结果表明:停输前,当前行汽油后行柴油时,管道的倾角越大,混油量越小,管道倾角越小,越易出现混油;当前行柴油后行汽油时,混油尾较长,倾角越大,混油量越大,管道倾角越小,混油量越小,但倾角对混油的影响较小;倾角对前行汽油后行柴油时混油量的影响大于前行柴油后行汽油时混油量的影响。停输后,在相同倾角下停输时间越长,混油量越大;在停输时间相同时倾角越大混油量越大。当前行柴油后行汽油时,随着停输时间的延长,混油越来越均匀,其倾角和管道的倾角一致,停输时间和倾角对前行汽油后行柴油时混油的影响较大。  相似文献   

2.
针对成品油管道沿线落差较大且出现翻越点时,管路变径对成品油顺序输送混油比例产生影响的问题,应用C FD软件多相流模型,以汽油和柴油作为交替输送对象,建立顺序输送混油控制方程,分别对变径位置在弯管前和弯管后两种情况进行数值计算,得到了混油量分布云图,分析了不同输送顺序对混油体积分数的影响。结果表明,弯管前变径时,后行柴油和后行汽油的混油段长度大致相等,后行柴油楔入到前行汽油中的量较多;弯管后变径时,后行柴油的混油段较长,沿轴向各截面的平均体积分数不均匀。因此,成品油管道通过翻越点时,选取变径位置在弯管前,并多采用前行柴油后行汽油的输送方式有助于减少混油量。  相似文献   

3.
对顺序输送汽油前行柴油后行和柴油前行汽油后行的切换输送过程进行模拟分析,借助CFD仿真软件建立油品交替输送的三维流动传质耦合模型。模拟结果表明:2种输送工况的横向混油截面变化趋势均是以初期的弓形前锋曲面和随后逐渐变尖的锥形曲面向前行油品延伸;汽油前行的纵向混油截面变化,后行柴油是以逐渐变尖的楔形前锋曲面从管道底部嵌入汽油;柴油前行的纵向混油截面变化,后行汽油是以逐渐变尖的楔形前锋曲面从管道顶部嵌入柴油;黏度大的作为前行油品,边界层区域雷诺数小,管壁附近形成的混油层厚,侧面、顶面和底面边界层区域的混油量均是前行柴油后行汽油的输送方式混油量较大。  相似文献   

4.
为研究变径管对成品油顺序输送混油量的影响,应用多相流模型,将90#汽油与0#柴油两种油品作为交替输送对象,对成品油管道的变径方式及变径角度对成品油顺序输送混油量的影响进行数值计算,得到了混油量分布情况,并对其结果进行了分析。结果表明,混油进入突扩管中,混油段长度增长速度明显降低,混油段长度也出现短时间的减小,而后混油段长度增长速度明显加快,但低于变径前的水平,且随着变径角度的增加,混油段长度均有不同程度的减小;混油段流入渐缩管后,混油段长度增长速度显著变大,而后出现减小的趋势,但仍高于变径前的水平,且随着渐缩管变径角度的增加,混油段长度均有不同程度的增加。  相似文献   

5.
为研究变径管对成品油顺序输送混油量的影响,应用多相流模型,将90#汽油与0#柴油两种油品作为交替输送对象,生成了顺序输送混油控制方程。针对成品油管道的变径方式及变径角度对成品油顺序输送混油量的影响进行数值计算,得到了混油量分布情况,并对其结果进行了分析。结果表明,混油进入突扩管中,混油段长度增长速度明显降低,混油段长度也出现短时间的减小,而后混油段长度增长速度明显加快,但低于变径前的水平,且随着变径角度的增加,混油段的长度均有不同程度的减小;混油段流入渐缩管后,混油段长度增长速度显著变大,而后出现减小的趋势,但仍高于变径前的水平,且随着渐缩管变径角度的增加,混油段长度均有不同程度的增加。  相似文献   

6.
为研究变径管对成品油顺序输送混油量的影响,应用多相流模型,将90#汽油与0#柴油两种油品作为交替输送对象,生成了顺序输送混油控制方程。针对成品油管道的变径方式及变径角度对成品油顺序输送混油量的影响进行数值计算,得到了混油量分布情况,并对其结果进行了分析。结果表明,混油进入突扩管中,混油段长度增长速度明显降低,混油段长度也出现短时间的减小,而后混油段长度增长速度明显加快,但低于变径前的水平,且随着变径角度的增加,混油段的长度均有不同程度的减小;混油段流入渐缩管后,混油段长度增长速度显著变大,而后出现减小的趋势,但仍高于变径前的水平,且随着渐缩管变径角度的增加,混油段长度均有不同程度的增加。  相似文献   

7.
顺序输送粘度差对混油量影响分析   总被引:1,自引:1,他引:0  
针对两种不同粘度的后行柴油分别与同一种前行汽油顺序输送时存在的混油问题,借助CFD模拟仿真软件,建立了三维流动传质耦合模型。模拟计算结果表明,前行油品与后行油品的粘度差对顺序输送时的沿程混油量有显著影响。由横向混油截面的变化情况来看,混油初期后行柴油以弓形前锋曲面嵌入到前行油品中,运行30s其前锋曲面逐渐变尖且以锥形曲面向前行油品逐渐延伸;从纵向混油截面的变化情况来看,截面柴油以楔形前锋曲面从管道下部嵌入前行油品中;管道侧面、顶面和底面边界层区域的混油量均随粘度差的增大而减小,且底面边界层区域的混油量最大。  相似文献   

8.
针对管道输送成品油时的混油量计算问题,采用多相流模型,建立顺序输送混油控制方程,采用有限体积法进行了数值求解。以0#柴油和90#汽油为输送介质,对成品油由上至下和由下至上流经Z型管的2种情况进行了数值计算。研究结果表明,成品油流经Z型管水平管段时,相对于管轴混油段呈不对称分布;在竖直管段,柴上汽下运行时混油量比柴下汽上运行时大;前汽后柴运行时截面的体积分数分布比前柴后汽运行时均匀。  相似文献   

9.
为研究顺序输送成品油管道混油在T型管处的分输问题,应用多相流模型,将90#汽油与0#柴油作为交替输送对象,建立了顺序输送混油控制方程。对汽柴油在不同输送顺序下形成的混油通过支管下载的过程进行数值计算,得到了混油量分布情况,分析了输送顺序不同时分输部分干线中混油对混油段的影响。结果表明,对干线管道中的混油通过沿线所设站场进行适量下载等混油处理,可显著缩短混油管段长度,减小管道末站对混油段下载的压力。  相似文献   

10.
对大庆原油和俄罗斯原油顺序输送时,因大庆原油粘度较高,所以顺序输送时对混油量的影响较大,基于顺序输送混油机理,建立了顺序输送混油控制方程,借助CFD软件采用有限体积法,对不同流速的顺序输送过程进行了数值计算,分析了在不同流态下大庆原油的粘度越低混油量越小的原因。同时,提出了如下建议:在混油交界面处,往大庆原油中加入适量的降粘剂或掺入适量的柴油降低其粘度,以减少顺序输送过程中大庆原油和俄罗斯原油的混油量。  相似文献   

11.
针对埋地管道输送不同油品发生泄漏问题, 采用有限容积法建立埋地管道周围土壤多孔介质的三维流动传质数学模型, 通过C F D软件分别模拟了汽油、 柴油、 原油管道下方发生泄漏后, 不同油品在地下及地表的扩散范围。模拟结果表明, 在泄漏时间相同时, 柴油在土壤中的扩散范围最大, 其扩散范围比汽油大2 0%左右, 而汽油和原油的扩散范围基本相等; 当泄漏时间大于2h时, 不同油品在地下、 地表扩散速率基本趋于稳定。泄漏油品扩散范围的模拟对被污染土壤的修复工作具有指导意义。  相似文献   

12.
在考虑重力影响的情况下,从动量一质量传递耦合着手,采用K - ε 紊流模式理论,建立起顺序输送管内非稳态油品传质数学模型,并对该模型进行数值求解,计算结果清晰地反映出管内两种油品交界面处的对流扩散传质现象。同时模拟结果表明,竖直管段中密度差对混油的影响在层流底层表现比较明显,对混油尾影响较大;密度较大的油品在管段上方时,重力场的作用使得紊流核心区的混油界面向前推移,但层流底层形成的混油尾长度明显拉长,当油品速度增加时,紊流脉动强度增加,混油尾长度将减小;通过竖直下坡管道分析,发现竖直管道中密度差对混油的影响大于粘度差对混油的影响,竖直管段密度差对混油的影响不可忽略。  相似文献   

13.
埋地不同压力管道泄漏的数值模拟   总被引:1,自引:0,他引:1  
利用有限容积法建立埋地输油管道周围土壤多孔介质的三维流固耦合数学模型, 借助F LUENT软 件, 模拟了不同压力的埋地管道泄漏前后管道周围大地温度场的变化情况及油品在地下、 地表的扩散情况。模拟结 果表明, 泄漏前不同压力的管道周围温度场分布相同; 泄漏后不同压力的管道周围温度场变化缓慢, 管道压力越大, 温度场变化越明显; 当管道压力变为原来压力的2倍时, 油品在地下的扩散量比原扩散量的2倍稍小一些。  相似文献   

14.
利用石油烃降解菌混合菌和紫花苜蓿、高羊茅2种植物对不同浓度柴油污染土进行植物修复、微生物修复和植物—微生物联合修复室外盆栽对比试验,研究植物修复与植物—微生物联合修复试验中植物种子萌芽率和植物生长状况,采用超声萃取—紫外分光光度法分析3种修复方式对柴油污染土的降解效果。试验结果表明,柴油延长了植物种子的萌芽时间;在植物修复和植物—微生物联合修复过程中,高羊茅的植物生物量和株高大于紫花苜蓿,植物—微生物联合修复的植物生物量和株高总体上明显高于植物修复;3种修复方式修复柴油污染土的总体降解效果排序为:植物—微生物联合修复>微生物修复>植物修复;高羊茅的修复效果优于紫花苜蓿;柴油污染土的柴油浓度越低,修复效果越好。  相似文献   

15.
柴油车具有低油耗、排放小的特点,发展前景看好。大城市限制柴油车在城区行驶可能有碍柴油车在我国的持续发展。文章比较分析了柴油车与汽油车的性能和排放情况,提出了减少柴油车排放污染的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号