首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
研究了1040℃1h油冷、炉冷(5℃/min)、1℃/min、0.5℃/min冷却后耐热钢1Cr12Ni3Mo2VN的组织和该钢1040℃1h不同冷却速度淬火+565℃2h空冷后的力学性能。试验结果表明,该钢4种冷却速度淬火均可得到马氏体组织,但油冷+回火的A_(KV2)值为156.5 J,而5~0.5℃/min冷却+回火时为40.5~16.5 J。残余奥氏体发生热失稳分解是导致试验钢淬火缓冷后冲击韧性显著下降的主要原因;在淬火缓冷过程中720~820℃这一温度段,由于原奥氏体晶界上碳化物的大量析出,使残余奥氏体中合金元素和碳含量的显著减少,造成淬火组织中的残余奥氏体稳定性大幅度下降。  相似文献   

2.
高强度易切削沉淀硬化不锈钢2Cr16Ni3Mo2CuN在退火状态下有优良的切削性能。研究了经过一级退火温度710~800℃和二级退火温度570~620℃处理后2Cr16Ni3Mo2CuN钢的布氏硬度(HB)值,以及1 050~1 085℃45 min油冷,-70℃2 h,150,170℃回火后的力学性能。试验结果表明,710~740℃5 h空冷+620℃5 h空冷处理后,2Cr16Ni3Mo2CuN钢HB值在321以下;1 050~1 085℃淬火,150~200℃回火处理后,该钢强度极限σb≥1 520 MPa,δ5≥12%,冲击功AKU≥40 J。2Cr16Ni3Mo2CuN钢具有明显的二次硬化特征,二次硬化峰温度范围为480~520℃。  相似文献   

3.
适当提高淬火温度,由于未溶碳化物(M23C6)的减少可使韧性得到改善,16NiCo(0.16C-10Ni-14Co-1Cr-1Mo)钢的淬火温度超过860℃,510℃回火的冲击韧性和断裂韧性将出现缓慢下降。23NiCo(0.23C-12Ni-14Co-3Cr-1Mo)钢的淬火温度超过950℃,482℃回火冲击韧性大幅度降低。  相似文献   

4.
采用力学性能试验和金相显微镜(OM)、扫描电子显微镜(SEM)等显微组织分析方法对一种高Co-Ni含量二次硬化钢25Co15Ni11Cr2MoE淬火后,经200~750℃回火后的力学性能和冲击断口形貌的变化规律进行了分析研究,结果表明:25Co15Ni11Cr2MoE试验钢淬火+回火后具有明显的二次硬化效应,在400~495℃范围内,回火后的硬度值均高于淬火态硬度值;随着回火温度的提高,钢的抗拉强度、屈服强度和硬度均不断增加,在470℃回火后,试验钢的硬度和抗拉强度均达到了极大值57.3HRC和2160MPa;而冲击韧性值随着回火温度的升高先降低,在430℃达到极小值,随后逐渐提高,并在510℃回火后达到极大值。建议25Co15Ni11Cr2MoE钢的最佳热处理制度为:950℃×1h油冷+(-73℃)×1h空气中升温至室温+495℃×5h空冷,此时试验钢具有最佳的强韧性匹配。  相似文献   

5.
采用光学显微镜、扫描电子显微镜、洛氏硬度计、万能力学试验机以及冲击试验机研究了950℃淬火220℃、240℃、260℃、280℃、300℃和320℃3 h回火试验对20SiMnMo高强度钢(/%:0.22C,0.80Si,1.00Mn,0.40Mo,0.72Cr,0.20Ni)微观组织和力学性能的影响。结果表明,随着回火温度的升高,试验钢的硬度、强度不断下降,伸长率、室温冲击功先升高再降低。当260℃回火时,试验钢具有均匀细长的板条马氏体组织,其强塑韧综合力学性能最佳:硬度值44.8HRC、AKV2冲击功75.3 J、抗拉强度1 278 MPa、屈服强度1 210 MPa、伸长率15.5%。  相似文献   

6.
《特殊钢》2017,(4)
设计的试验钢(0.45C-12.5Cr-0.41Mo-0.22V钢和0.85C-10.5Cr-0.91Mo-0.25V钢)由50 kg真空感应炉熔炼并锻造成试验用钢样。试验研究了淬火温度(950~1150℃)、回火温度(一次回火200~400℃,二次回火500~600℃)对钢的组织、强度、延伸率、硬度和冲击功的影响。结果表明,1 050℃淬火+500℃二次回火处理后0.45C-12.5Cr-0.41Mo-0.22V钢的性能最佳:抗拉强度为1 712.3 MPa、屈服强度为1 476.5 MPa、延伸率为7.8%、HRC硬度值为69.3以及冲击功为7.3 J。二次硬化会提升模具钢的硬度值,而回火过程中碳化物的长大以及分布不均匀容易造成冲击韧性的降低。试验的新型不锈钢模具的强度指标高于普通商用模具钢42Cr3Mo2MnV1。  相似文献   

7.
研究了6Cr15Mo钢(%:0.59C、14.96Cr、0.52Mo、0.22V、0.004 6N)1 000~1100℃淬火的组织和硬度,以及1080℃淬火+100~700℃回火时,该钢的组织、硬度和冲击韧性。结果表明,1080℃淬火6Cr15Mo钢硬度值最高(平均HRC值61.6),在500℃回火出现二次硬化峰,冲击韧性较低(12 J/cm~2),采用1 080℃淬火+150~250℃回火,可获得最佳强韧性配合(平均HRC值55,冲击值17 J/cm~2)。  相似文献   

8.
0Cr15Ni5WMoVNb钢(%:0.068C、14.54Cr、5.32Ni、0.88W、0.92Mo、0.20V、0.10Nb)经5 t中频感应炉+2 t真空电渣重熔炉冶炼,经锻造、热轧成Φ45 mm棒材,试样经1 000℃30 min固溶空冷+-70℃2 h冷处理后进行400~600℃4 h时效空冷。试验结果表明,在450℃时效0Cr15Ni5WMoVNb钢的强度最大,以准解理断裂为主,冲击功低为40 J,随时效温度上升,冲击功显著上升,强度下降,在510℃时效该钢有良好的强韧性,抗拉强度R_m 1300 MPa,屈服强度R_(p0.2)1100 MPa,冲击能A_(KV) 100 J。  相似文献   

9.
奥氏体化温度对30Cr3SiMnNiWMo钢组织性能的影响   总被引:2,自引:0,他引:2  
路妍  王军华  苏杰  杨卓越  谢刚 《特殊钢》2011,32(4):60-63
试验研究了860~980℃奥氏体化处理对30Cr3SiMnNiWMo钢(%:0.28C、0.74Mn、1.04Si、2.70Cr、1.15Ni、0.45Mo、1.04W、0.07V、0.05Al)组织以及260℃回火后钢的力学性能的影响。结果表明,30Cr3SiMnNiWMo钢860~920℃淬火组织中存在大量M6C碳化物,对回火钢的韧性不利;950℃淬火后,钢中M6C碳化物基本溶解,原奥氏体晶粒开始长大,回火后钢的强度降低;30Cr3SiMnNiWMo钢经920℃1h油淬+260℃2h回火可以获得具有少量残余奥氏体和未溶碳化物的板条马氏体组织,并具有优良的强韧性(Rm=1680 MPa, Rp0.2=1330 MPa,A=13%, Z=58.5%, AKU=85 J) 。  相似文献   

10.
研究了二次固溶温度对1Cr16Ni4Mo2Cu2W1VN钢力学性能的影响。结果表明,二次固溶温度为970和1 020℃时,原奥氏体晶界分布着大量连续的M23C6,晶界阻碍位错运动,屈服强度较高,裂纹沿晶界扩展,抗拉强度较低,塑性很低。二次固溶温度为1 070和1 100℃时,原奥氏体晶界对位错的阻碍作用降低,屈服强度较低,残余奥氏体的TRIP效应较大,抗拉强度较高,塑性很高。  相似文献   

11.
方剑  黄彦  唐应波 《特殊钢》2018,39(3):54-58
试验用Φ360 mm 27CrMnMoV钢(/%:0.27C,0.25Si,0.92Mn,1.06Cr,0.75Mo,0.009P,0.003S,0.088V)铸坯经穿孔和Φ340连轧机组热轧成Φ244.48 mm×15.11 mm无缝管。试验研究了830~950℃水淬,880℃水淬+600~680℃ 30~120 min回火,以及880℃两次水淬+620~660℃回火工艺对该钢管组织和性能的影响。一般要求V150管屈服和抗拉强度分别为1034~1241 MPa和≥1103 MPa,0℃横向冲击功≥80 J。结果表明,一次淬火+630~655℃ 60min回火时Mo和V碳化物析出产生二次硬化,其屈服和抗拉强度分别为1 034~1 150 MPa和1 103~1 225 MPa,0℃横向冲击功为80~108 J。二次淬火+635~655℃ 60 min回火工艺,循环淬火使奥氏体晶粒细化,提高强度的同时显著改善韧性,其屈服和抗拉强度分别为1 034~1 170 MPa和1 103~1 240MPa,0℃横向冲击功为80~120 J,比一次淬火+回火工艺更容易实现V150高抗挤毁套管性能的稳定性控制。  相似文献   

12.
李惠  宋志刚  丰涵  郑文杰  张颖 《特殊钢》2015,36(3):57-60
通过Thermo-Calc热力学计算、金相和电化学方法分析和研究了1 050~1120℃固溶的00Cr21Ni2Mn5N、00Cr22Ni5Mo3N、00Cr25Ni7Mo3N、00Cr27Ni7Mo5N四种典型超低碳双相不锈钢在5001~100℃时效后σ相的析出规律和σ相含量对四种双相不锈钢点蚀电位的影响。结果表明,σ相析出量随着时效温度的升高呈现先增加后减小的趋势,并且随着双相不锈钢中铬-钼含量(/%)依次20.98-0.03,22.41-3.16,25.30-3.46,26.69-4.74递增时,σ相析出量峰值递增,依次为4.9%,22.5%,27.0%,40.5%,同时σ相完全溶解温度提高,依次为660,950,1 060,1100℃;σ相析出量越大超低碳双相不锈钢耐点蚀性能越低,4种钢的σ相析出峰值对应的Eb100值依次为-94.0,100.1,260.2,117.7 mV。  相似文献   

13.
淬火温度对石油套管用钢27MnCrV冲击韧性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了890~780℃淬火对630℃回火的石油套管用钢27MnCrV(%:0.24~0.30C、0.50~0.70Cr、0.06~0.10V)横向冲击功的影响。结果表明,随淬火温度降低,该钢横向V-冲击功显著增加;在保证拉伸强度不降低的情况下,横向最小冲击功由890℃淬火+630℃回火的35 J提高到820℃+630℃回火的66 J。27MnCrV钢最佳热处理工艺为830℃±10℃水淬+630℃回火空冷,其屈服强度847~860 MPa,抗拉强度922~930 MPa,横向冲击功57~66 J,满足标准要求。  相似文献   

14.
淬-回火温度对高强度钢30NCD16组织和性能的影响   总被引:3,自引:0,他引:3  
刘湘江  骆鸿 《特殊钢》2007,28(2):56-57
试验了电渣重熔高强度钢30NCD16(%:0.31C、1.41Cr、4.01Ni、0.52Mo)840-930℃淬火、350-625℃回火时的组织和力学性能。结果表明,高强度钢30NCD16最佳热处理工艺为840-870℃淬火+560℃回火,可获得细致均匀的索氏体组织,钢的抗拉强度≥1 200 MPa,冲击功AKU5≥50 J。  相似文献   

15.
对直径为Φ195 mm的Ti-V微合金化26CrMoV钢(/%:0.27C,0.45Mn,0.25Si,0.006P,0.004S,0.97Cr,0.78Mo,0.002Ti,0.043V)热轧棒材取样后在热处理试验室分别按880℃淬火+645℃回火和925℃正火+880℃淬火+645℃回火两种工艺进行热处理.通过检测...  相似文献   

16.
回火温度对轧后直接水淬15CrMoV钢组织和力学性能的影响   总被引:1,自引:1,他引:0  
试验用钢15CrMoV(%:0.15C、0.29Si、0.57Mn、1.01 Cr、0.37Mo、0.24V)16 mm板材的终轧温度为900~950℃,轧后在880~900℃水淬,并经670~800℃回火。结果表明,试验钢在线淬火后的组织为马氏体+贝氏体,随回火温度升高,钢中碳化物析出量增加,贝氏体板条束逐渐合并和减少,最终转化为碳化物+多边形铁素体组织;在730~780℃回火,15CrMoV钢具有良好的综合力学性能,抗拉强度680~760 MPa,冲击功55~130 J。  相似文献   

17.
镍对09CuPCrNi耐候钢高温力学性能的影响   总被引:1,自引:0,他引:1  
采用Gleeble 3000热模拟实验机测试和研究了CCT曲线以及镍含量对09CuPCrNi耐候钢(%:0.08C、0.34~0.35Cu、0.091~0.099P、0.53~0.55Cr、0.02~0.27Ni)的700~1 300℃塑性和抗拉强度的影响。结果表明,当钢中Ni含量由0.27%降至0.02%时,Ar1、Ar3分别由670.2℃和860.0℃升至710.0℃和882.5℃,并且贝氏体和马氏体相变也提前发生,800℃高温脆性温度区增宽,950℃高温脆性区消失。0.02%Ni耐候钢09CuPCrNi室温抗拉强度475~485 MPa,伸长率32%~34%,冲击功72~84 J,满足该耐候钢力学性能使用要求。  相似文献   

18.
采用Gleeble 1500热模拟试验机对SAE8640钢280mm×325mm连铸坯(/% : 0.41C,0.20Si,0.80Mn,0.005S,0.014P,0.46Cr,0.43Ni,0.21Mo,0.043Alt,0.0011O,0.0054N)的550~1200℃力学性能进行了测定,并应用扫描电镜观察了拉力试样的断口形貌。结果表明,SAE8640钢有明显的3个脆性区:Ⅰ脆性区>1200℃,Ⅱ脆性区950~1000℃,Ⅲ脆性区650~750℃;该钢950~1000℃的断面收缩率为60%,拉伸断口为脆性河流状花样,应避免在该温度范围进行轧制,该钢650~750℃的断面收缩率≥65%,拉伸断口为韧性断裂,可满足连铸坯矫直时塑性的要求。  相似文献   

19.
研究了淬火温度对780 MPa级水电用钢(/%:0.09C,0.10Si,1.50Mn,0.009P,0.002S,0.90Cr,0.20Ni,0.023Ti,0.004Nb,0.001 0B)组织和力学性能的影响。结果表明,试验钢不同温度淬火后均得到了板条贝氏体组织,随着淬火温度910℃升高至950℃,奥氏体平均晶粒从9.1μm长大到16.6μm,试验钢回火后基本保持了淬火态的板条结构。淬火温度在910~950℃试验钢的强度随着淬火温度的升高先增大后减小,并在930℃时达到最大,试验钢冲击韧性和断后延伸率与强度有着相同的变化规律。在930℃淬火,610℃回火的工艺参数条件下,获得最佳的力学性能:屈服强度为802 MPa,抗拉强度为858 MPa,伸长率为19%,-40℃冲击功为238 J。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号