共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
圆柱形相变蓄热器蓄/放热性能实验研究 总被引:2,自引:0,他引:2
设计并搭建了以太阳能为热源的圆柱形蓄热器实验台,将封装了相变材料(PCM)的蓄热球体放置在蓄热器中,测量蓄热器进出口和蓄热器内第一~七层的热媒(HTF)温度,对所测温度和流最进行数据采集.分析HTF的进口温度和流量变化对蓄热器热性能的影响.结果表明,随着HTF的进口温度的提高,完成蓄热所需的时间不断减少,蓄热效率得到提高,流速的增加对蓄热的影响不大.初步掌握热媒的流动特性对相变蓄热装置蓄放热过程的影响,为蓄热器的工程应用设计、评价提供参考依据. 相似文献
7.
高温肋板式蓄热器蓄/放热特性的数值模拟 总被引:1,自引:0,他引:1
采用计算流体动力学方法对高温不锈钢肋板式相变蓄热器的蓄/放热特性进行了数值模拟。分析了多孔肋片和锯齿肋片对蓄热器蓄/放热特性的影响以及载热体入口温度和流量对相变材料熔化和凝固速度的影响,计算结果表明:在该新型肋板式相变蓄热器中,多孔翅片的性能优于锯齿肋片;随着蓄热器传热温差的增大和载热体流量的增加,蓄热器的蓄/放热性能越好;肋片作为换热元件可以很好的提高蓄热器的蓄/放热性能。所得结论可为高温肋板式蓄热器的优化设计提供有益的参考。 相似文献
8.
9.
10.
对以水为热载体,方形槽内水平圆管外石蜡的相变蓄热过程进行了数值模拟.通过合理的分析与假设,建立数学模型及其定解条件,并利用实验数据进行验证.引入无量纲管壁温度Ste数和无量纲相变材料初温G数,分析了Ste和G数对相变材料熔化、凝固过程的影响,给出了不同Ste教的熔化过程固液相图,结果表明:Ste数对熔化和凝固过程有显著影响,与S=0.098时的熔化时间相比,Ste =0.1875时熔化时间将会缩短将近1/2,而Ste =0.277时比Ste=0.1875时熔化时间缩短了1/3.与Ste=0.0804时的熔化时间相比,Ste =0.170时凝固时间缩短1/2,而Ste =0.259时比Ste =0.170时凝固时间缩短了1/3.G数对相变过程的影响比较小,凝固时甚至可以忽略不计. 相似文献
11.
12.
13.
14.
基于多孔介质的连续介质模型,并考虑泵的功耗和蓄热罐的热损失,对熔融盐填充床的显热蓄热进行研究。以填充床蓄放热效率和效率为评价标准,讨论熔融盐进口温度Tin、蓄热罐高度H、孔隙率ε、填充颗粒直径d和熔融盐入口速度u对其的影响。结果表明:蓄热罐高度和填充颗粒直径是影响蓄放热效率和效率的主要因素。蓄热罐高度2~6 m时,总蓄放热效率和效率分别从0.891和0.879提高到0.931和0.923;颗粒直径5~40 mm时,总蓄放热效率和效率分别从0.956和0.951降低到0.875和0.861。 相似文献
15.
本文对阵列式肋片强化传热的石蜡类相变储能单元进行数值模拟,相变材料储存于阵列式肋片之间,热量通过铝材基座和肋片传递给相变材料。采用十八烷作为数值模拟的相变材料,其熔点是28℃,密度和动力粘度随温度变化,通过改变肋片尺寸以及边界条件研究相变材料的融化过程,通过分析温度场,流场,固-液两相分布探究相变规律,用无量纲参数分析肋片尺寸以及不同边界条件对相变过程的影响。结果表明,受自然对流的影响,随着时间推移,肋片处热流密度先增加后减少,基座处热流密度大幅度升高;相变材料融化后,对流换热是主要的传热方式;对于相变层偏薄的相变储能单元,宜采用小尺寸肋片,相变层偏厚的相变储能单元,宜采用大尺寸肋片。 相似文献
16.
17.
提出一种基于太阳能热风供暖系统的多级相变通风吊顶新型供暖末端。建立多级相变太阳能通风吊顶传热数值模型,对比研究了单级、两级和三级相变太阳能通风吊顶的蓄放热特性,分析相变材料的长度配比、空气流速对供暖末端蓄放热性能的影响规律。研究结果表明,与采用单一相变材料的通风吊顶相比,多级相变太阳能通风吊顶在蓄放热过程中出口平均温度差异更小。相变蓄热级数为3时,通风吊顶的蓄、放热效率及相变材料利用率改善最大,分别为6.5%、7.9%和25.1%,各级相变材料长度的配比为1∶1∶1时,蓄、放热效率及相变材料利用率最佳,分别为51.0%、88.7%和93.9%。空气流速不宜大于1.6 m/s,在保证供暖效果的前提下可适当减小空气流速。 相似文献
18.
19.
20.
以赤藻糖醇为相变材料,采用Fluent软件对同心套管式相变蓄热单元的熔化和凝固过程进行了三维非稳态数值研究。在考虑自然对流的前提下,对比了水平入射式、顶部入射式及底部入射式相变蓄热单元的传热特性,得到了固液界面分布图和温度云图随时间的变化特性,对比了各自的蓄放热速率。研究表明:自然对流在熔化过程中起主要作用,而在凝固过程中起的作用很小;蓄热速率从大到小排列,依次是水平入射式、顶部入射式和底部入射式,相比于底部入射式,水平入射式的总熔化时间可减少27.2%,而顶部入射式的总熔化时间仅减少3.7%;放热速率从大到小排列,依次是顶部入射式、水平入射式和底部入射式,相比于底部入射式,顶部入射式的总凝固时间可减少9.2%,而水平入射式的总凝固时间仅减少0.6%;水平入射式蓄热单元是满足蓄放热速率快这一要求的首选型式。 相似文献