首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着单台风力机功率的不断增大,变桨距控制对于风力机起动、制动性能的改善和对输出功率的稳定作用不断显现。单台风力机功率的不断增大也导致了塔架的增高和风轮直径的增大,风切变和塔影效应对风轮旋转平面风速分布产生的差异也不断变大。为了验证风速差异对变桨距控制的影响,建立了考虑风切变、塔影效应的风速模型以及基于叶素理论的风力机模型。采用1.5 MW风力机的数据进行研究,仿真验证表明,在集中变桨时,即使参考风速稳定,风速分布的差异也会使实际的风轮输出转矩产生脉动,桨距角产生周期性脉动,从而导致输出功率产生脉动,影响电能质量,同时叶片上产生不平衡的弯矩,增加了叶片的疲劳载荷,缩短了叶片的寿命。大型风力机应采用独立变桨技术来解决这些问题。  相似文献   

2.
当风速大于额定风速时,风电机组通过控制变桨机构调整桨距角来减小风能捕获,从而使机组的输出功率保持在额定功率附近。变桨系统一般采用PI(比例积分)控制算法,但由于风轮气动转矩与风速、风轮转速、桨距角呈高次复杂非线性关系,单一控制参数的变桨控制器难以满足风电机组在额定风速以上的运行性能要求。为了解决单一变桨控制性能不足的问题,提出一种基于风轮气动特性的风力机变桨优化控制策略,该策略通过测量桨距角当前值来动态调整变桨控制器参数,可有效提升变桨系统随风动作连续性,减小由变桨控制引起的转速与功率波动,削减机组由变桨动作引起的动态载荷。  相似文献   

3.
低空急流条件下水平轴风力机风轮气动特性的研究   总被引:1,自引:0,他引:1  
为阐明低空急流条件下风力机风轮的气动特性,基于工程化的边界层风速模型和Von Karman谱模型建立不同来流的脉动风场,对比研究低空急流条件下NREL 5 MW风力机风轮的输出功率和气动载荷的变化规律。结果表明:如果仅以轮毂高度处的风速作为风力机变桨控制的依据,与均匀来流和剪切来流相比较,低空急流条件下,虽然来流风功率明显增大,但风轮的输出功率在较高风速时反而减小;风轮所受的不平衡气动载荷,包括横向力、纵向力、偏航力矩和倾覆力矩在较高风速时小于剪切来流的结果;且仅以轮毂高度处的风速预测得到的风轮输出功率高于实际结果,其最大相对误差为89.4%。因此,低空急流条件下,为提高风能利用率和风轮输出功率的预测精度,应考虑不同高度位置处的风速大小对风力机进行变桨控制和功率预测。  相似文献   

4.
为了减小风力机叶轮的气动载荷,文章提出了将叶片方位角权系数分配与叶片根部气动载荷反馈相结合的独立变桨距控制方法(AAWC-LF)。控制器依据方位角的大小不同,利用权系数分配器重新分配每个叶片桨距角的调整变化量。同时,考虑到现场实际风速会突然大幅变化,在基于方位角权系数分配的独立变桨距控制基础上,增加了基于叶片根部实际气动载荷的桨距角修正环节。通过对比仿真曲线和实验结果,发现该算法增加了桨距角的调整次数,同时减小了叶轮所承受的气动载荷,对机组的输出有功功率没有形成冲击,叶轮转速更加平稳,控制效果较理想。  相似文献   

5.
以NREL-5 MW风力机为研究对象,基于叶素动量理论,考虑动态失速、风剪切及塔影效应等气动修正模型,开发Matlab非定常气动载荷计算程序,研究浮式水平轴风力机气动特性。结果表明:为保证风力机气动载荷模拟的正确性,气动修正模型必不可少;基础运动对风力机气动性能有显著影响,基础运动使风力机输出功率增大,但同时存在较大的振荡幅度,导致功率输出不稳定;叶片变桨失效导致功率输出更加不稳定。  相似文献   

6.
以新型变桨距风力机为研究对象,针对其独特的变桨调节机构,通过风洞试验的方法,采用IMC载荷测试系统,对其关键部件进行载荷测试。试验结果显示:随着桨距角增大,叶根所受弯矩降低,但叶根挥舞弯矩较摆振弯矩减小更明显;塔筒俯仰方向的受力大于侧弯方向,当风轮转速约为243.5 r/min时,塔筒侧弯受力出现突增;不同桨距角下,变桨调节机构的齿条与齿条同步盘测点载荷大小随风速变化趋势一致,但随着桨距角的增加,表现为先增加后减小再增加的趋势。  相似文献   

7.
采用CFD方法,以NH1500三叶片大型水平轴风力机为研究对象,研究额定风速剪切来流下的塔影效应对水平轴风力机叶片和风轮非定常气动载荷的影响。结果表明:剪切来流下,叶片和风轮的气动载荷均呈余弦变化规律,塔影效应的主要影响叶片方位角范围为160°~210°,且该范围不随风剪切指数的变化而变化。相同风剪切指数下,塔影效应对叶片和风轮气动载荷的均方根影响较小,对其波动影响较大。当风剪切指数从0.12增至0.30时,塔影效应下,叶片气动载荷的均方根减小,推力和转矩的波动幅度增大,偏航力矩和倾覆力矩的波动幅度减小;风轮推力和转矩的均方根减小,波动幅度变化较小,而倾覆力矩和偏航力矩的均方根增大,且波动幅度也增大。  相似文献   

8.
为研究某小型水平轴变桨风力机的启动性能,通过搭建风力机风洞试验台,分析不同桨距角对风力机静态扭矩、转速以及启动风速的影响,同时通过数值模拟仿真结果结合理论分析,研究风力机启动时桨距角变化过程中的相关气动性能。结果表明:风速分别保持在3~6 m/s不变时,随着桨距角的增加,风轮静态扭矩值呈先增大后减小的趋势,50°桨距角下的静态扭矩约为10°桨距角下静态扭矩的2.2倍;风轮静止时表现出与高速旋转状态下截然相反的气动性能,叶片叶根区域为启动扭矩主要动力产生区域;桨距角越小,叶根区域流动分离现象越明显,且分离点越靠近前缘,气动性能越差;40°桨距角时,可兼顾最小的启动风速和较大的旋转速度,测得最低启动风速为3.7 m/s。  相似文献   

9.
基于前馈补偿方位角权系数的分程独立变桨距控制研究   总被引:2,自引:0,他引:2  
依据风速特性及桨叶的空气动力学分析得到独立变桨距控制的基本控制规律,提出基于前馈补偿的方位角权系数分程独立变桨距控制,此控制方法采用方位角权系数分配分别对3个桨叶的桨距角进行调整,实现独立变桨距控制,然后根据前馈补偿理论对变桨距过程进行分程独立变桨距控制。在Matlab中进行仿真。仿真结果表明,该控制方法不仅可实现风力机的独立变桨,在稳定输出功率的同时减小桨叶的拍打振动,且可避免由于全程独立变桨距桨叶调节频繁所引起的电动变桨执行电机因过热损坏的问题。控制方法简单,更适合用于独立动作的电动变桨距执行机构。  相似文献   

10.
为满足分布式电网发展要求,提高小型风力机风能利用率,防止大风条件损坏风力发电设备,文章设计了一种应用于小型风力机的新型主动统一变桨调节装置。文章介绍了装置的基本构造与工作原理,利用熔融沉积3D打印技术制作小比例模型验证了变桨装置的可行性,并通过数值模拟方法对功率输出性能及风轮载荷进行了模拟分析。模拟结果表明:通过适当调节桨距角大小,可有效控制风力机输出功率保持在额定功率值附近,且高转速条件下增大桨距角对功率输出性能有较强抑制作用;叶片应力集中区域主要在叶根及叶片中部靠近前缘部位,在功率调控过程中,随着桨距角与风速的增加,应力集中区域由叶中向叶根转移,最大应力值总体呈下降趋势。  相似文献   

11.
当风速大于额定风速时,通过调节桨距角可以限制输入气动功率和风轮转速,使等效在低速轴上的发电机转速更好地跟踪风轮转速,从而减小低速轴扭矩,实现风机叶片、塔筒和传动链的动态载荷控制。文章基于线性矩阵不等式(Linear Matrix Inequality,LMI)设计多目标鲁棒H_∞/H_2状态反馈变桨距控制器。设计变桨距控制器时充分考虑了海上机组的运行环境,分析了海浪对机组产生的影响,控制目标选取机组的功率和机组的关键部位疲劳载荷,在保证功率稳定输出、减小功率波动同时,减小机组载荷。使用MATLAB和FAST软件进行联合仿真,仿真结果表明新型控制策略可以有效平稳风电机组输出功率并降低机组载荷,实现了优化H_∞/H_2鲁棒控制性能。  相似文献   

12.
袁全勇  李春  杨阳 《太阳能学报》2019,40(1):213-219
针对垂直轴风力机叶片攻角连续性变化导致的非稳定流动,提出一种改善叶片攻角的主动变桨控制方法。首先通过实验验证数值模拟方法的可行性及有效性,其次对变桨控制前后风力机流场进行二维数值模拟,得到风力机在不同变桨条件下的气动特性及流场结构,计算结果表明:变桨控制可使叶片在不同方位角下处于更合适的攻角,进而获得较优的气动性能,变桨控制后的风能利用系数有所增加。随着最大变桨角度的增加,风能利用系数先增大后减小,最大可提高33.2%,同时主动变桨可抑制叶片尾缘流动分离,使得叶片尾涡耗散轨迹更贴合风轮旋转圆周。从而降低转矩系数波动幅值,提高风力机运行寿命。  相似文献   

13.
风力机的偏航与变桨可有效降低风轮对风能的捕获能力.为分析风力机处于变桨与偏航两种状态下其尾流及输出功率特征,文中采用修正的风力机致动线模型,以NREL 5 MW为研究对象,结合大涡方法,从两种偏航角度(以+z为轴顺时针旋转10°和15°)、两种变桨角度(增大桨距角12°和减小桨距角8°)展开模拟研究.研究结果表明:风力...  相似文献   

14.
高峰  郭鹏 《动力工程学报》2014,34(10):784-789
提出一种利用预测载荷进行独立变桨距控制的方法,应用叶素理论进行载荷预测,对测量风速以及受风剪效应和塔影效应影响的轮毂风速进行修正,使载荷计算更加准确;应用粒子群算法进行桨距角优化控制,优化搜索中通过对目标函数的选取和相关参数的设定保证控制的实时性.应用Bladed软件对某1.5MW变桨距风电机组进行仿真.结果表明:所提出的独立变桨距控制方法可在保证功率控制的同时实现载荷控制,能有效减小风轮不均衡载荷,降低机组疲劳载荷.  相似文献   

15.
针对大型变速变桨风力机在高风速区的气动性能随桨距角变化而改变的特性,文章提出了一种功率-桨距角变化的灵敏度控制策略。通过设计功率灵敏度因子调节PID变桨距控制器,建立输出功率偏差与风轮转速偏差的闭环系统。将提出的策略应用到某5 MW风机的参数模型中,利用MATLAB平台进行仿真验证。结果表明,提出的控制策略抑制了高风速区的扰动风速对系统的影响,使输出功率和风轮转速保持在额定值附近且波动很小,提高了系统的动态性能和稳态性能,同时提高了发电质量,并为风电机组并网需求奠定了理论基础。  相似文献   

16.
为探究大型水平轴风力机达到切出风速停机后变桨故障叶片的气动特性及准静态结构响应,基于计算流体力学方法对NREL 5 MW风力机变桨故障/成功叶片气动侧状态进行分析,并利用双向弱流固耦合及曲屈分析对典型方位角下变桨故障叶片展开研究。结果显示:切出风速下变桨故障叶片挥舞力矩平均值为变桨成功叶片的13.8倍,且前者的流场尾迹更为明显。此外,180°方位角变桨故障叶片较之0°方位角变桨故障叶片应力及叶尖位移分别减小29.8%和32.7%,一阶屈曲因子增加20.2%。  相似文献   

17.
蒋说东  刘军 《太阳能学报》2015,36(5):1097-1104
详细分析导致功率波动和功率损失的原因,提出一种转矩优化控制策略。该转矩优化控制方法结合查表法和非线性PI控制器,在低风速区仅启用查表法以追踪最优功率;额定风速附近及以上时运用非线性PI控制器使转矩输出形成滞环,来抑制额定风速附近的功率波动;采用基于转矩误差及误差变化率的桨距角模糊调节器,实现转矩和变桨控制解耦;给出一种功率平均值限制算法,可抑制阵风时(包括额定风速以下和以上)引起的转速短时过速和功率损失,同时也可减少变桨机构的疲劳载荷。以风力机设计专业软件Bladed为工具,结合C语言编写外部控制器,对风力发电机组转矩及变桨控制策略进行仿真研究,仿真结果表明所提出的优化方案可行。  相似文献   

18.
以某5 MW风力机为研究对象,基于大涡模拟方法,考虑不同叶片桨距角大型风力机体系表面流场信息和气动力分布模式进行模拟,并与规范及实测结果进行对比验证大涡模拟的有效性。在此基础上,对比分析不同叶片桨距角下风力机塔架及叶片表面平均和脉动风压、升力与阻力系数、绕流及尾流特性的分布模式,总结叶片桨距角和干扰对风力机体系气动性能的影响规律。研究表明:随着叶片桨距角的增大,叶片迎风面正压分布区域逐渐减小,塔架显著干扰区段迎风面0°和侧风面90°处的平均风压、极值风压逐渐增大,而脉动风压逐渐减小,层升力系数减小,阻力系数增大。塔架未干扰区段平均风压、脉动风压、极值风压和层阻力系数均未呈现明显变化,在桨距角较大(70°~90°)时,叶片尾迹对塔架绕流影响逐渐减弱,塔架气动力分布与未受叶片变桨和干扰时较为接近。综合分析表明,叶片桨距角为0°时,叶片和塔架之间的相互干涉作用最为明显,风力机体系气动性能最为不利。  相似文献   

19.
对桨距角突变情况下的风力机气动性能进行了数值模拟,着重分析了风力机叶片非对称性、叶片结构弹性及塔架结构弹性对气动性能的影响,并模拟了桨距角突变情况下风力机气动性能的过冲现象.结果表明:变桨前后主轴扭矩的波动主要是由于风力机2个叶片质量非对称引起的,而风力机叶片结构弹性加剧了风轮主轴扭矩在过冲过程的振荡;风力机叶片非对称性、叶片结构弹性及塔架结构弹性共同作用是导致轴向推力出现波动的主要原因.  相似文献   

20.
周玲  任永 《太阳能学报》2023,(3):178-184
通过分析机组在触发偏航超限停机过程中,叶片在不同方位角下的受力情况,指出大偏航角下叶片受载不均衡是导致轮毂中心出现极限载荷的根源,并研究桨距角与偏航角方向对不均衡受载的影响,在原始控制策略的基础上,引入基于叶轮方位角的独立变桨控制(IPC)变速率停机策略,减小机组在负向大偏航下的气动不平衡,大大降低了轮毂与偏航轴承中心极限载荷,依据IEC标准,并以某7.0 MW海上风力机为研究对象,通过偏航超限工况载荷计算,对比分析发现,基于叶轮方位角IPC变速率停机策略,可减小不平衡推力引入的倾覆弯矩,达到减小机组载荷的目的,为此特定风况下的降载提供了可靠依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号