首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究了固溶和时效热处理以及涂装对A356合金轮毂的力学性能和显微组织的影响,并对拉伸断口形貌进行了观察。结果表明,A356合金轮毂适宜的热处理工艺为:固溶温度为530℃、固溶时间为3 h、淬火温度为60℃、淬火时间为120 min、时效温度为160℃和时效时间3 h;铸态A356合金轮毂由初生α-Al枝晶和不均匀分布的共晶硅相组成,T6和T6+涂装态A356合金中的共晶硅相发生球化,尺寸相对较小且分布更加均匀;A356合金轮毂的抗拉强度和断后伸长率从高至低依次为T6+涂装态、T6态、铸态。  相似文献   

2.
采用人工神经网络方法,研究了固溶温度、固溶时间、时效温度和时效时间对喷射成形ZA35合金力学性能的影响,建立了喷射成形ZA35合金热处理工艺的人工神经网络模型。模型的输入参数为固溶温度、固溶时间、时效温度和时效时间,输出参数为合金抗拉强度和伸长率。该模型可以预测ZA35合金在不同热处理工艺参数下的力学性能,也可以优化热处理工艺参数。推荐喷射成形ZA35合金热处理工艺参数为370 ℃×4 h固溶处理+150 ℃×7 h时效处理。  相似文献   

3.
采用CMT5105电子万能试验机、HB-3000B型布氏硬度计和S-4800型高分辨率场发射扫描电子显微镜,研究了固溶和时效热处理对6061铝合金轮毂组织和力学性能的影响。结果表明,在相同固溶和时效温度条件下,6061铝合金轮毂的屈服强度、抗拉强度、伸长率和硬度随时效时间的增加先增大然后降低;6061铝合金轮毂最优的热处理工艺为540℃/100 min固溶处理和177℃/300 min时效处理;在该热处理条件下,6061铝合金轮毂的屈服强度、抗拉强度、伸长率和硬度的平均值分别为327.5 MPa、375.0 MPa、12.2%和128.8 N/mm~2。  相似文献   

4.
以Cu-15Ni-8Sn合金粉为原料制备了粉末冶金试样,研究其在不同的固溶温度、冷压变形、时效温度和时效时间条件下的硬度,着重研究了840℃×15 min固溶+40%冷压变形条件下时效温度和时间对硬度及剪切强度的影响规律,采用金相及扫描电镜分析了相应的微观组织。结果表明,影响Cu-15Ni-8Sn合金硬度的主次因素为:冷压变形量>时效时间>时效温度>固溶温度,较优的工艺参数为840℃×15 min固溶+40%冷压变形+400℃×4 h时效,可获得37.6~38.3 HRC的高硬度和570~628 MPa的抗剪切强度。  相似文献   

5.
采用不同的固溶温度、固溶时间、时效温度和时效时间对汽车空调新型铝合金Al-Si-Cu-Mg-Ti-In进行了热处理,并进行了试样拉伸性能和耐磨损性能的测试与分析。结果表明:在试验条件下,随固溶温度从500℃增加到530℃,固溶时间从4 h增加到12 h,时效温度从160℃提高到190℃,或时效时间从5 h提高到9 h,该合金的抗拉强度均先增大后减小,磨损体积先减小后增大,拉伸性能和耐磨损性能均先提高后下降。合金的固溶温度、固溶时间和时效温度、时效时间分别优选为525℃、10 h和185℃、8 h。  相似文献   

6.
通过盲孔测量残余应力的方法,对不同固溶时效工艺下7075铝合金的残余应力进行测量,得出了不同固溶温度、固溶时间、时效温度、时效时间对7050铝合金残余应力的影响程度。结果表明:当固溶温度460℃、固溶时间3h、时效温度200℃、时效时间6 h时获得的7050铝合金残余应力最小。采用正交试验及极差分析法确定各参数对残余应力影响的敏感程度,时效温度影响最大,其次为固溶温度、固溶时间、时效时间。  相似文献   

7.
基于人工神经网络(ANN),建立了ZA35合金热处理工艺对阻尼性能影响的人工神经网络模型,预测了固溶时效处理后ZA35合金的阻尼性能。模型输入参数为固溶时间、固溶温度、时效时间和时效温度,输出参数为ZA35合金的内耗值。结果表明:该模型可以预测ZA35合金在不同热处理工艺参数下的阻尼性能,也可以优化热处理工艺参数。预测的最大相对误差为13.54%,拟合率为0.982,最终确定ZA35合金阻尼性能最佳的工艺参数是340℃×5 h固溶+150℃×8 h时效处理。  相似文献   

8.
采用正交设计试验法研究了7AXX铝合金热处理工艺,结果表明:固溶温度为470℃保温时间为1 h时合金中的过剩相已得到充分溶解。双级时效中对于材料布氏硬度值的影响因子先后顺序应为:终时效温度、终时效时间、预时效时间、预时效温度。7AXX铝合金双级时效的四因素中终时效温度是影响最终性能的主要因素,随着合金终时效温度的升高材料硬度降低。经470℃×1 h固溶+110℃×4 h+150℃×8 h热处理后,合金抗拉强度为750.27 MPa;屈服强度为562.57 MPa;断后伸长率为26.43%。  相似文献   

9.
采用La+Ce混合变质的方法对ADC12铝合金进行变质处理,并随后进行固溶+时效热处理。分别对变质处理后的试样及固溶+时效热处理后的试样的微观组织、导热系数和硬度进行表征。结果表明:混合变质能改善合金的微观组织,对合金导热性能及力学性能的提升较为明显,导热系数达到了107.8W/(m·K),硬度达到103.2HV;固溶+时效热处理可以使合金的微观组织分布更为均匀,内部的共晶Si相进一步转变为颗粒状或短棒状,合金的导热系数和硬度随着固溶温度的提升而增大,随着固溶时间的增大呈现先增大后减小的趋势。并且,随着时效时间的增加,合金的导热系数及硬度同样呈现先增大后减小的趋势。在固溶温度为520℃、固溶时间为6h、时效温度为170℃、时效时间为8h的工艺条件下,合金的导热系数及硬度分别可达131W/(m·K)及129.4HV,固溶+时效热处理进一步提升了合金的硬度及导热性能。  相似文献   

10.
对A286铁基高温合金进行固溶温度+时效两段式热处理工艺优化研究。采用固溶热处理制度为930~1020℃/4 h/WC,固溶时间为0~4 h。合金时效研究采用640~790℃/4 h/AC热处理;在时效温度730℃条件下,研究0~16 h时效时间对合金组织及性能的影响。结果表明:随着固溶温度上升和时间延长,合金晶粒尺寸有一定程度长大,但硬度逐渐下降;随着时效温度提高及时间延长,合金的硬度先升高而后降低;在固溶热处理过程中,合金随着固溶处理温度提高及时间的延长,γ'相回溶入基体;当固溶后的时效温度提高至700℃才析出γ'强化相;随着时效时间延长,析出的γ'强化相发生粗化;合金时效γ'强化相粗化过程符合Ostwald熟化长大规律,计算值与实际值相关系数大于97%;同时,确定了最佳的热处理工艺制度。  相似文献   

11.
采用正交试验设计法研究了固溶时间、时效温度和时效时间三因素对Mg-5. 0Sm-0. 6Zn-0. 5Zr(质量分数,%)合金组织、散热性能和力学性能的影响及其显著性。结果表明,各因素对合金组织影响的主次顺序为固溶时间时效温度时效时间,对合金散热性能影响的主次顺序为时效时间时效温度固溶时间,对合金力学性能影响最显著的为时效温度,固溶时间和时效时间影响相对较弱。采用固溶温度520℃、固溶时间4 h,时效温度180℃、时效时间40 h的热处理工艺能使合金获得较好的散热性能。采用固溶温度520℃、固溶时间8h,时效温度200℃、时效时间10 h的热处理工艺能使合金获得较好的力学性能。而采用固溶温度520℃、固溶时间4 h,时效温度200℃、时效时间40 h时,合金可以获得较好的综合性能。  相似文献   

12.
研究了固溶及时效处理对La变质4004铝合金组织及性能的影响。结果表明:随着固溶温度的升高、固溶时间的延长,合金中共晶硅熔断并粒化,500℃固溶6 h时性能达到最佳;随着时效温度的升高、时效时间的延长,合金硬度先升高后降低,时效温度为200℃、时效时间6 h时其硬度达到最高值112 HBW。变质4004铝合金最佳热处理工艺为:500℃×6 h固溶+200℃×6 h时效。  相似文献   

13.
采用正交试验法对喷射沉积过共晶铝硅合金挤压坯的固溶+人工时效处理工艺进行优化,研究固溶和人工时效的温度及时间对挤压态合金组织结构的影响,测定不同热处理后合金的硬度和耐磨性,确定最佳的热处理工艺.结果表明,固溶温度、固溶时间、时效时间和时效温度对过共晶铝硅合金组织和性能的影响依次降低.并得 出最佳的热处理工艺为520℃×3h 固溶+120℃×10h时效,处理后合金的硬度为84.4HB,相对耐磨性为原始挤压态试样的1.22倍.  相似文献   

14.
热处理对铸造Al-Si-Cu-Mg合金的强化起到至关重要的作用。针对某公司的铸造Al-Si-Cu-Mg合金热处理过程所需时间长的问题,研究了不同固溶温度、固溶时间组合以及不同时效温度、时效时间组合对于该合金显微组织和力学性能的影响,最终优化出更合理的热处理工艺制度:500℃×6 h+520℃×8 h固溶处理+170℃×7 h时效处理。  相似文献   

15.
采用不同的固溶温度、固溶时间、时效温度和时效时间对7075铝合金板材搅拌摩擦焊接接头进行了热处理,并分析了固溶时效工艺对焊接接头疲劳性能的影响规律。结果表明,随固溶温度从420℃提高至480℃,固溶时间从1h延长至4 h,或时效温度从90℃增加至130℃,焊接接头的疲劳性能先提高后下降;随时效时间从12 h延长至36 h,焊接接头的疲劳性能先提高后基本不变。固溶时效能使焊接接头的疲劳性能从母材的80%提高至母材的98%。焊接接头适宜的固溶时效工艺:固溶温度为470℃、固溶时间为3 h、时效温度为120℃、时效时间为24 h。  相似文献   

16.
采用不同的工艺参数对Cu-Al-Fe-Ce机床用耐磨铜合金的进行了热处理,研究了固溶温度和时效温度对合金力学性能、耐磨损性能的影响。结果表明:随固溶温度从750℃增至850℃或时效温度从150℃增至350℃,合金的力学性能和耐磨损性能均先提高后下降。优化的合金固溶温度为820℃,时效温度为300℃。与750℃固溶处理相比,820℃固溶时合金磨损体积减小110%。  相似文献   

17.
研究了固溶温度、冷却方式、保温时间及取样方向对两相区锻造的大规格TC17钛合金棒材显微组织和力学性能的影响,并根据实验结果选择最佳热处理制度。结果表明:TC17钛合金棒材的最佳热处理工艺为800℃/2h/WQ+630℃/8h/AC;固溶温度在两相区时,随着固溶温度的升高,合金强度升高,塑性降低;固溶空冷+时效的合金较相同温度固溶水冷+时效的合金强度高、塑性低;在相同温度固溶水冷条件下,缩短固溶保温时间,可改善合金的塑性;锻造后的TC17钛合金大规格棒材存在各向异性。  相似文献   

18.
热处理对ZK60镁合金组织与力学性能的影响   总被引:1,自引:0,他引:1  
研究固溶和时效热处理工艺对铸态ZK60镁合金显微组织与力学性能的影响.结果表明,当固溶处理条件为400 ℃下保温10 h、时效处理温度为150.c时,ZK60合金中析出相随时效时间的延长而增加,直至30 h.当时效温度升至200℃时,析出相体积分数在时效时间为15~20 h时达到最大值.室温拉伸实验表明,高密度第二相析出物有利于提高合金的强度和靼性.优化的热处理工艺条件为400℃固溶10 h随后于150℃时效30 h,得到的镁合金兼具有高的强度与塑性综合性能.  相似文献   

19.
董晟全  梁艳峰  杨通 《铸造技术》2004,25(11):851-854
通过正交试验的方法,研究了固溶温度对时间、时效温度和时间对原位增强铸造Al-4.5Cu复合材料力学性能的影响,并分析其作用机理.结果表明,各因子对复合材料力学性能的影响由大到小依次为:固溶温度>时效温度>时效时间>固溶时间.固溶温度对复合材料的抗拉强度有显著影响;固溶温度、时效温度和时效时间对复合材料的伸长率和硬度都有显著影响.较优的固溶与时效工艺为:复合材料在533℃固溶12~16 h,165 ℃时效7h.  相似文献   

20.
采用固溶+冷变形(80%变形量)+不同温度和时间时效工艺制备了Cu-0.33Cr-0.06Zr合金试样,研究了时效温度以及时效时间对Cu-0.33Cr-0.06Zr合金导电率和显微硬度的影响。结果表明,固溶后冷变形加时效可以显著提高合金的导电率和显微硬度。固溶和冷变形后Cu-0.33Cr-0.06Zr合金的合理时效工艺为450 ℃下时效2 h,经此工艺处理后合金的导电率可以达到83 %IACS,硬度达到195 HV0.1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号