首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
永钢高压气瓶钢4147(/%:0.46~0.50C,0.15~0.35Si,0.8~1.0Mn,≤0.015P,≤0.008S,0.85~1.10Cr,0.15~0.25Mo,0.02~0.04Al)的冶炼工艺为110 t EBT电弧炉-LF-VD-Φ500 mm圆坯连铸。通过使用炉料80%铁水+20%废钢, 控制(Pb+As+Sn+Sb+Bi)≤150×10-6,EAF终点[C]≥0.08%,终点[P]≤0.006%,并在出钢过程加1.0 kg/t Al;以及采用LF精炼合成渣(/%:40~55CaO,20~30Al2O3,≤6MgO,≤4.0SiO2,≤1.5FeO),成品硫含量≤0.002%,T[O]≤17×10-6,[N]≤32×10-6,[H]≤0.9×10-6,(Pb+Sn+Sb+As+Bi)≤0.013 7%;连铸圆坯中心疏松、缩孔≤1.5级,轧材各类夹杂物均≤0.5级,满足高压气瓶钢质量要求。  相似文献   

2.
分析了“BOF-RH-CC”和“BOF-LF-CC”两种工艺流程生产的ML08Al钢中非金属夹杂物类型、数量密度及总氧变化。结果表明,两种流程转炉脱氧合金化后钢中非金属夹杂物主要为Al2O3;采用“BOF-LF-CC”流程,LF精炼结束钢中部分非金属夹杂物由Al2O3转变为Al2O3·CaO和Al2O3·MgO;而采用“BOF-RH-CC”流程,RH真空后钢中非金属夹杂物仍然以Al2O3为主。转炉出钢脱氧合金化后,钢水中总氧含量27.8×10-6~31.5×10-6,经过LF精炼后,总氧含量为20.2×10-6~22.5×10-6,而经过RH处理后,总氧含量为14.7×10-6~15.3×10-6。LF精炼和RH真空处理对夹杂物数量的去除率分别为49.6%和80.9%。因此,“BOF-RH-CC”工艺流程生产的ML08Al钢水洁净度优于“BOF-LF-CC”工艺流程生产的钢水。  相似文献   

3.
易正明  肖慧 《特殊钢》2013,34(2):45-47
钢厂试验的低碳铝镇静钢(/%:0.036~0.037C、0.009Si、0.173~0.176Mn、0.012~0.013P、0.005~0.006S)生产流程为200 t LD转炉-钢包吹Ar精炼(LBAr)-230 mm×1 300 mm板坯连铸工艺。通过LD转炉挡渣出钢,并加入Mn-Fe、铝丸进行预脱氧和合金化3 min,钢水T[O]和[N]分别为91.8×10-6和19.4×10-6,在氩站经10~12 min 25~45 m3/h流量吹氩和3~5 min 15~25 m3/h的软吹氩后,T[O]降至42.3×10-6,[N]为22.0×10-6,中间包和铸坯T[O]分别为38.3×10-6和28.9×10-6,[N]分别为23.6×10-6和26.5×10-6。该流程生产的铸坯满足T[O]≤30×10-6的内控要求。经氩站精炼后,显微夹杂物去除率为30.0%,而大型夹杂物去除率达58.7%;显微夹杂物主要为脱氧产物Al2O3;大型夹杂物主要为SiO2、Al2O3、SiO2-Al2O3、CaO-SiO2-Al2O3。  相似文献   

4.
喻林 《特殊钢》2020,41(6):60-63
攀钢27CrMoNbV钢的流程为采用铁水预处理-120 t顶底复吹转炉-LF-RH-360 mm×450 mm坯连铸工艺,通过铁水预处理深脱硫,转炉双渣法冶炼脱磷,转炉出钢及LF精炼深脱硫、采用(1.6~2.2) CaO/Al2O3精炼渣系、RH处理喂Ca-Si线处理、保护浇注等工艺优化,生产的27CrMoNbV钢化学成分稳定,P≤0.010%,S≤0.004%,[H]≤1.5×10-6,T[O]≤0.0011%,非金属夹杂A、B、C、D、Ds均≤1.0级,完全满足技术要求。  相似文献   

5.
汪国才  龚志翔 《特殊钢》2013,34(6):39-41
马钢特钢公司生产GCr15轴承钢的流程为110 t UHP EBT EAF-120 t LF-RH-Φ380~Φ600 mm圆坯连铸工艺。通过控制EAF终点[C]≥0.10%,下渣量≤2.0 kg/t钢,出钢用铝铁预脱氧;LF终渣(/%):50~60CaO、5~6MgO、8~15SiO2、15~20Al2O3,RH 67 Pa时间≥10 min,连铸结晶器、铸流、凝固末端电磁搅拌等工艺措施,使钢中总氧含量-T[O]≤8×10-6,Φ130 mm材中A、B、C、D夹杂物≤1.0级,Ds夹杂0级,满足对产品冶金质量的要求。  相似文献   

6.
为了研究120 t BOF-LF-RH-160 mm×160 mm坯CC工艺生产的铝脱氧20钢(/%:0.13~0.23C,0.17~0.37Si,0.35~0.65Mn,≤0.035P,≤0.035S,0.020~0.050Al)中非金属夹杂物的控制技术,对LF精炼过程中脱氧剂加入时机进行调整,并对精炼过程中非金属夹杂物类型与夹杂物数量进行分析。结果表明,转炉出钢后采用铝块脱氧,LF精炼进站非金属夹杂物主要为Al2O3,精炼结束前部分夹杂物由Al2O3转变为Al2O3·CaO,RH结束后非金属夹杂物密度3~4个/mm2,铸坯氧含量(7.48~8.18)×10-6;而转炉出钢后采用硅锰进行脱氧,精炼结束前采用铝线,精炼过程中夹杂物主要为MnO·SiO2,CaO含量小于5%,精炼结束非金属夹杂物控制为Al2O3,RH真空处理后,非金属夹杂物密度小于1.5个/mm2,铸坯氧含量(4.94~5.53)×10-6。因此,针对采用“BOF-LFRH-CC”工艺流程生产的含铝钢,提出精炼结束前将非金属夹杂物控制为Al2O3,同时运用RH真空高效去除夹杂物,以提高钢水的洁净度。  相似文献   

7.
研究的帘线钢的冶炼流程为150 tLD-RH-LF-软吹氩-CC工艺。通过LD出钢时加入Si-Mn脱氧,并在LF加入低碱度顶渣进行钢渣反应控制钢中非金属夹杂物的塑性。结果表明,RH-LF-中间包和铸坯阶段,钢中主要夹杂物分别为MnO-Al2O3-Si02(RH),Ca0-Al2O3-Si02(LF)和MnO-Al2O3-SiO2(中间包和铸坯),采用Si-Mn脱氧和SiC扩散脱氧,低碱度低Al2O3顶渣精炼,控制T[O]≤20×10-6,[A1]s≤0.0013%,可有效控制钢中夹杂物数量和尺寸,以及控制夹杂物中Al2O3含量并形成可塑性夹杂。  相似文献   

8.
攀钢采用铁水预处理-120 t顶底复吹转炉-LF-RH-280 mm×380 mm连铸工艺生产GCr15轴承钢。通过转炉采用挡渣技术和增碳法操作工艺,转炉终点碳0.03%~0.07%,出钢时加入含CaC2脱氧剂预脱氧,出钢后进行铝脱氧,LF精炼渣碱度CaO/SiO23.0~5.0,中间包平均钢水过热度为26.5℃。检验结果表明,铸坯的碳偏析指数为1.08,平均[O]为8×10-6,[P]≤0.015%,[S]≤0.011%,夹杂物级别满足标准要求。  相似文献   

9.
石油套管用钢(/%:0.26~0.29C,0.25~0.35Si,0.40~0.50Mn,≤0.009P,≤0.004S,0.95~1.05Cr,0.09~0.11V,0.02~0.04Al,0.015~0.020Ti,≤0.0060N)的生产流程为铁水预处理-120 t BOF-吹氩-LF-喂CaSi线-RH-合金化-喂CaSi线-软吹氩-Φ220 mm圆坯连铸工艺。通过热力学分析得出钢中N含量超过50×10-6以及工业试验得出生产的圆铸坯中的N含量为67×10-6时,在铸坯中易形成2μm以上的TiN夹杂。通过控制BOF终点[N]≤30×10-6,LF终点[S]≤25×10-6,[O]≤25×10-6,[N]≤35×10-6,RH合金化后终点[N]≤35×10-6,[H]≤1.5×10-6,稳定喂CaSi线速度300~400 m/min,控制中间包[N]≤40×10-6,严格连铸保护浇铸工艺,则铸坯中的N含量≤50×10-6,钢中TiN夹杂数量显著下降,未发现大尺寸TiN夹杂物。  相似文献   

10.
杜广巍  郭汉杰 《特殊钢》2016,37(4):18-22
55SiCr钢280 mm×325 mm铸坯(/%:0.55C,1.42Si,0.67Mn,0.008S,0.67Cr)的冶炼流程为80 t BOF-LF-RH-CC工艺。通过BOF出钢加Al和硅铁合金,同时加入精炼渣,控制精炼过程渣碱度R(CaO/SiO2)为2.0左右,RH≥20 min,软吹搅拌≥15 min,控制钢中夹杂物转变,得到洁净弹簧钢55SiCr。分析结果表明,LF精炼过程中夹杂物由早期的Al2O3-SiO2-MnO和Al2O3夹杂将逐渐转变为Al2O3-CaO-SiO2夹杂,RH真空处理后夹杂物全部转变为Al2O3-CaO-SiO2夹杂,LF开始精炼T[O]和[N]分别为36×10-6和26×10-6,铸坯T[O]、[N]分别为7×10-6和43×10-6,铸坯中夹杂物主要为Al2O3-CaO-SiO2和Al2O3,尺寸≤10μm。   相似文献   

11.
为达到高铁齿轮钢高洁净度,尤其是单颗粒D类球状夹杂物尺寸≤10μm的目标,开发了电渣工艺生产高铁齿轮用钢18CrNiMo7-6(/%:0.15~0.21C,≤0.40Si,0.50~0.90Mn,1.50~1.80Cr,1.40~1.70Ni,0.25~0.35Mo,≤0.010P,≤0.010S),Ф250 mm钢坯生产工艺流程:EBT电弧炉-LF-VD-模铸5.6 t电极坯-电渣重熔-锻造-退火-检验。采用5.6 t电渣锭,渣系为CaF2∶Al2O3∶CaO∶MgO=65∶20∶10∶5,冶炼过程中熔化率控制在500~550 kg/h,渣量为180~200 kg,采用新渣系后生产高铁齿轮钢的洁净度为[O]≤15×10-6,[H]≤1.0×10-6,P≤0.008%,S≤0.005%,A、B、C、D、DS类非金属夹杂物级别≤1.0级,单颗粒D类球状夹杂物尺寸≤10μm,淬透性、力学性能等均符合要求。  相似文献   

12.
0.88%Si无取向硅钢的生产工艺为100 t BOF出钢时加300kg石灰,终点[C]0.035%~0.05%,出钢温度1640~1650℃,RH吹氧脱碳,加99.0%Al-Fe合金6.69 kg/t,加70%Si-Fe合金15.70 kg/t,70 mm板坯连铸过程全程保护浇铸,使用镁质碱性中间包覆盖剂。分析结果表明,RH终点[O]28×10-6,铸坯[O]22×10-6,RH-前[N]为16×10-6,RH过程增氮4×10-6,RH结束到铸坯增氮6×10-6;RH脱碳终点时钢中夹杂物以球形MnO·Al2O3为主;RH出站时以不规则形状的Al2O3为主,并伴有少量单独存在的CaS夹杂;中间包钢液内的夹杂物主要以不规则形状的Al2O3为主;铸坯中多为不规则形状的Al2O3以及少量AlN,还有少量由结晶器卷渣引起的含Na成分的复合夹杂物。  相似文献   

13.
张勇  康建光  任焕  何明辉 《特殊钢》2010,31(5):33-35
N80-1石油套管钢36Mn2V(%):0.34~0.38C、0.25~0.40Si、1.45~1.70Mn、≤0.020P、≤0.015S、0.01~0.04Al、0.11~0.16V,(Sn+Sb+As+Pb+Bi)≤0.035,[O]≤35×10-6,[N]≤80×10-6,[H]≤2.5×10-6由80 t顶底复吹转炉-LF-VD-Φ210~270 mm圆坯连铸工艺冶炼。通过高拉碳补吹氧、控制终点[C],控制出钢回磷≤0.008%,使用碱度3.2~4.0的精炼渣系等工艺措施,使该钢P为0.012%~0.019%,S为0.003%~0.005%,[O](11~22)×10-6,[N](39~76)×10-6,[H](1.5~2.1)×10-6,其成分、组织和性能均达到用户以及API Spec5CT标准要求。  相似文献   

14.
闻小德  吕安明  刘利  刘兵 《特殊钢》2016,37(2):36-38
风电法兰用钢S355NL(/%:0.14~0.48C,0.15~0.40Si,1.30~1.60Mn,≤0.013P,≤0.005S,0.04~0.12V,0.03~0.05Nb,≤0.009Ti,≤0.30Cr,≤0.50Ni,≤0.20Cu,≤0.10Mo,≥0.020Alt)的冶金流程为100t UHP EAF—LF—VD—Φ650 mm,Φ800 mm坯CC工艺。该钢1~2 mm裂纹探伤不合格的分析结果表明,其主要原因为氧的铝类夹杂和铸坯疏松缺陷所致。通过在LF终点喂钙线0.45 kg/t,VD处理时间由原25 min增至27 min,降低钢中[N]至78×10-6~82×10-6,[H]为1.1×10-6~1.3×10-6,[O]为12×10-6~15×10-6,软吹氩气流量由2×25L/min降至2×20 L/min,时间≥12 min,降低钢水过热度5℃等工艺措施,使铸坯锻造后的探伤合格率超过99%。  相似文献   

15.
研究了铁水脱硫预处理-80 t顶底复吹转炉-LF-RH-280 mm×325 mm方坯连铸流程生产XGM6钢(/%:0.012C, ≤0.012Si, ≤0.08Mn,  ≤0.015P, ≤0.010S)等超低碳铝镇静钢时水口堵塞的原因和防止措施。通过控制转炉终点[O]≤600×10-6, LF顶渣为高铝渣+电石,RH-OB脱碳后加铝粒脱氧,控制RH终点氧含量20×10-6~30×10-6, RH终点[Al]s≤0.009%,中间包钢水过热度25~40℃,[Al]s≤0.004%等工艺措施,基本避免超低碳铝镇静钢水口堵塞,连浇炉数由不足2炉提高到8炉以上。  相似文献   

16.
方宇荣  陈正权 《特殊钢》2020,41(6):64-67
采用全流程系统取样的方式,对120 t BOF-LF-VD-CC工艺生产20CrMnTi齿轮钢中氧含量和夹杂物特性的演变规律进行系统的分析和研究。实验结果表明,采用铝脱氧和高碱度[(CaO)/(SiO2)=3.8~7]还原渣工艺,能使铸坯中T[O]低于20×10-6;中间包钢水中平均T[O]增加6×10-6;齿轮钢冶炼过程中,夹杂物完成了Al2O3→Al2O3-MgO→Al2O3-CaO-MgO的转变。  相似文献   

17.
核电焊材用钢508 Ⅲ(/%:0.09~0.12C,0.30~0.40Si,1.45~1.65Mn,≤0.008P,≤0.008S,0.45~0.60Mo,0.60~0.75Ni)的生产工艺流程为20t EAF-LF-VD-4t铸锭-锻造150 mm×150 mm坯-轧制Φ5.5mm盘条。采用精选炉料,以及高碱度渣、高FeO含量,钢水温度1550~1570℃等措施控制,电弧炉终点[P]≤0.002%,并选用低磷合金,使钢中磷含量≤0.006%;LF采用硅钙合金沉淀脱氧,SiC粉扩散脱氧、CaO-Al2O3-SiO2渣系,碱度5.0~5.5,VD真空度≤67Pa,Ar流量30~50 L/min,保护浇铸等措施后,3炉钢的分析结果表明,钢中气体含量为1.3×10-6~1.5×10-6[H],10×10-6~14×10-6[O]和44×10-6~58×10-6[N],满足核电焊材用钢508Ⅲ洁净度的要求。  相似文献   

18.
研究的0.80%~0.82%C帘线钢的生产流程为80 t:BOF-CAS-LF-VD-150 mm×150 mm CC工艺。通过顶底复吹转炉出钢过程加入300 kg金属锰和200 kg高纯硅进行硅锰复合脱氧,LF过程先造碱度(CaO/SiO2)2.04的精炼渣,再将精炼渣碱度(CaO/SiO2)降至0.86,保持渣中Al2O3含量为~5%,来控制钢中非金属夹杂物的塑性转变。结果表明,铸坯平均总氧含量为16×10-6,氮含量控制在50×10-6左右,CAS(密封吹氩调成分)过程钢中夹杂物主要是MnO-Al2O3-SiO2;LF、VD过程钢中和铸坯中夹杂物主要是CaO-Al2O3-SiO2-MgO系,该类夹杂物尺寸偏小(2~3μm),分布在1 400℃低熔点区域附近。  相似文献   

19.
通过50 t EAF配加30~40 t铁水和12~16 t优质废钢,EBT无渣出钢,加150~200 kg钢芯铝预脱氧,LF用SiC扩散脱氧,控制精炼渣碱度4.0~5.9, VD前后软吹氩、连铸保护浇铸和电磁搅拌等工艺措施,GCr15轴承钢轧材中的氧含量为8×10-6~9×10-6。分析结果表明,LF前至VD后钢中夹杂物尺寸一般≤10μm,最大尺寸40μm,大部分夹杂物尺寸为3~6μm; LF前主要夹杂物为Al2O3,镁铝尖晶石,硫化物,Cr2O3, TiO2; VD前后为镁铝尖晶石,CaS和MgO。  相似文献   

20.
为了研究适合高洁净度高碳钢的LF精炼渣渣系,通过FactSage热力学软件计算精炼渣碱度(R)、(CaO)/(Al2O3)对精炼渣熔点的影响,得出最合适的精炼渣成分。根据热力学计算的精炼渣成分,降低原有渣系的钙铝比,并将优化的渣系成分用于65Mn钢工业试验。结果表明:优化后的精炼渣系成分质量分数为CaO52%~58%、Al2O328%~33%、SiO28%~12%、MgO5%~7%、R=4~6、(CaO)/(Al2O3)=1.5~2;使用该渣系进行工业试验,LF出站时的T.[O]可达7×10-6~13×10-6,RH出站时的T.[O]可达6×10-6~12×10-6;钢中全氧质量分数基本可控制在10×10-6内;65Mn钢卷中的B类细系夹杂均不大于1级,达到高级优质钢要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号