首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
在Gleeble 1500D热模拟试验机上,采用高温等温压缩试验对Cu-Ni-Si-P-Cr合金在应变速率为0.01~5 s 1、变形温度为600~800℃条件下的流变应力行为进行研究,利用光学显微镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Ni-Si-P-Cr合金在热变形过程中发生了动态再结晶,且根据变形温度的不同,真应力—真应变曲线的特征有所不同。流变应力随变形温度升高而降低,随应变速率提高而增大。从流变应力、应变速率和温度的相关性得出该合金热压缩变形时的热变形激活能Q和本构方程。  相似文献   

2.
为了研究挤压态ZK60镁合金的热变形行为,利用Gleebe-3500热模拟机在变形温度为523~723 K、应变速率为0.01~10 s~(-1)的条件下对挤压态ZK60合金进行了热压缩变形试验。通过真应力-真应变曲线分析了挤压态ZK60合金流变应力与应变速率、变形温度之间的关系,通过引入Z参数建立了挤压态ZK60合金的流变应力本构方程,并观察了其在热压缩过程中的显微组织变化。结果表明:挤压态ZK60合金的真应力-真应变曲线属于动态再结晶型,并且合金的流变应力在高变形温度或低应变速率条件下较低。在变形温度降低或应变速率升高时,动态再结晶晶粒变小,但动态再结晶进行的不充分,再结晶晶粒分布不均匀。通过本构方程计算出挤压态ZK60镁合金的变形激活能Q=122.884 k J/mol,应力指数n=5.096。  相似文献   

3.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,绘制了真应力-真应变曲线.分别讨论了变形温度、变形速率和合金元素对CuNiSi系列合金在高温压缩变形中的行为的影响.结果表明,应变速率和变形温度的变化对合金的再结晶影响较大,变形温度越高,合金越容易发生动态再结晶;应变速率越小,合金也越容易发生动态再结晶,所对应的峰值应力也越低,且CuNiSiP合金的流变应力在相同条件下高于CuNiSiAg合金的流变应力,最后求得了CuNiSiP和CuNiSiAg合金的变形激活能.  相似文献   

4.
采用Gleeble-3800热模拟试验机,对Incoloy825高温合金在应变为0.92、温度为950~1150℃和应变速率为0.001~1 s-1条件下进行单道次压缩试验。依据真应力-真应变曲线建立了动态再结晶临界方程和动态再结晶动力学模型。结果表明,Incoloy825高温合金热变形对温度和应变速率较为敏感,真应力-真应变曲线整体满足硬化-软化-稳态的流变过程,动态再结晶是Incoloy 825高温合金材料的主要软化机制。在热变形过程中,动态再结晶临界应变随变形温度的升高和应变速率的降低呈减小趋势。对动态再结晶动力学模型进行分析发现,动态再结晶百分含量随变形温度的升高和应变速率的降低而增大,表明高变形温度和低应变速率对动态再结晶具有促进作用。  相似文献   

5.
利用Gleeble-1500D热模拟试验机对Cu-Cr-Zr和Cu-Cr-Zr-Y合金,进行高温等温压缩试验,研究了在变形温度为650~850℃、应变速率为0.001~10 s-1条件下两种合金的流变应力的变化规律,测定了真应力一应变曲线,从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和本构方程,并利用光学显微镜分析了合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:稀土元素Y的加入细化了微观组织,提高了Cu-Cr-Zr合金的动态再结晶体积分数,并且大幅降低了合金的热变形激活能Q,改善了其热加工性能。  相似文献   

6.
《铸造》2017,(2)
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-Cr-Zr合金在变形温度为600~800℃、应变速率为0.01~5 s~(-1)和总压缩应变量约50%条件下的热变形行为进行了研究。利用光学显微镜观察Cu-Cr-Zr合金在不同变形温度、不同应变速率下的显微组织,分析其组织演变规律。结果表明:应变速率和变形温度的变化强烈地影响合金流变应力的大小;Cu-Cr-Zr合金在热变形过程中发生了动态再结晶,且流变应力随变形温度升高而降低,随应变速率提高而增大;在应变温度为800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征。从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程。  相似文献   

7.
利用Gleeble-3500在变形温度为600~900℃,应变率为0.001~1 s~(-1)下,对TiNiCr合金进行压缩,对真应力-应变曲线和压缩后试样的显微组织进行分析。结果表明:TiNiCr合金的真应力-应变曲线是由加工硬化效应和软化效应共同决定的,流变应力随温度的升高和应变率的减小而减小;在热压缩过程中,由于软化作用,引起加工硬化效应的位错逐渐消失,合金在不同变形条件下均出现了动态再结晶现象,再结晶机制是弓出形核;温度越高,应变率越低,TiNiCr合金动态再结晶趋势越明显,晶粒尺寸越大,软化机制越以动态再结晶为主;TiNiCr合金与传统非金属间化合物不同,只通过真应力-应变曲线不能推测其软化机制。  相似文献   

8.
利用Gleeble-1500D热模拟试验机,对Cu-0.2%Zr-0.15%Y合金进行高温热压缩热模拟试验,对合金在应变速率为0.001~1 s-1、变形温度为550~900℃时,试验过程中的流变应力变化、动态再结晶机制及其微观组织变化进行了研究。结果表明,试验合金流变应力受应变温度和变形速率的影响极大,动态再结晶的显微组织对温度的变化反应敏感,当变形温度降低或者应变速率升高时,其流变应力曲线随之上升。通过流变应力、应变速率和变形温度之间的联系,解出了该合金在热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)以及其本构方程。  相似文献   

9.
在Gleeble-1500热/力机上进行了变形条件对2124铝合金超厚板流变行为与显微组织的影响规律的系列实验研究,得到了不同变形条件下2124铝合金超厚板高温压缩成形过程中的流变曲线。实验结果表明,2124铝合金在0.01s-1~1s-1范围内,高温压缩变形过程存在近稳态流变特征,近稳态流变应力随着应变速率的降低和变形温度的升高而降低。当应变速率为10s-1时,真应力-真应变曲线出现锯齿状,说明合金发生动态再结晶现象。利用OM和TEM分别研究了变形温度、应变速率、应变量对2124铝合金高温压缩变形显微组织的影响,在此基础上,分析并建立了2124铝合金热压缩变形发生动态再结晶的临界条件。  相似文献   

10.
对Cu-Cr-Zr-Ag合金在Gleeble-1500D热模拟试验机上进行热压缩实验,对合金在应变速率为0.001~10 s-1、变形温度为650~950℃的高温变形过程中的流变应力行为、热变形过程中的组织演变和动态再结晶机制进行了研究。结果表明,流变应力随变形温度升高而减小,随应变速率提高而增大。Cu-Cr-Zr-Ag合金在热变形过程中的动态再结晶机制受变形温度和应变速率控制。当温度达到950℃,应变速率为0.001 s-1时,Cu-Cr-Zr-Ag合金发生完全的动态再结晶。该合金高温热压缩变形时的热变形激活能Q为343.23 k J/mol,同时利用逐步回归法建立了该合金的流变应力方程。  相似文献   

11.
采用Thermecmastor-Z热模拟试验机在变形温度为200~520℃、应变速率为2~60 s-1条件下对AZ31B镁合金厚板进行热压缩变形试验,压缩变形量为60%。结合变形后的微观组织以及热压缩真应力-真应变曲线,分析应变速率和变形温度等工艺参数对其微观组织演变的影响。结果表明:当变形温度高于320℃时,AZ31B镁合金的真应力-真应变曲线呈现典型的动态再结晶特性。当应变速率一定时,流变应力随温度升高而降低;当变形温度一定时,流变应力在高温低应变速率(低于15 s-1)下随应变速率增大而增大。变形后的微观组织显示,压缩变形过程中发生了明显的动态再结晶,动态再结晶体积分数随应变速率的增加而增大。另外,变形组织的均匀性受变形温度的影响十分显著。在热压缩实验的基础上,在温度为300~330℃时对板材进行单道次大压下量的热轧,获得的板材具有均匀细小的晶粒及优异的力学性能。  相似文献   

12.
采用热压缩实验研究2050 Al-Li合金在变形温度为340~500°C、应变速率为0.001~10 s~(-1)范围内的热变形行为。分析摩擦及温度变化对流变应力的影响,并对流变曲线进行修正处理;基于动态材料模型及修正后的真应力数据,获得真应变为0.5条件下合金的加工图;利用金相显微镜对压缩试样显微组织变化进行观察。结果表明,在热变形过程中材料的摩擦及温度变化对流变应力有显著影响;合金合适加工区域位于变形温度为370~430°C、应变速率为0.01~0.001 s~(-1)区域,以及变形温度为440~500°C、应变速率为0.3~0.01 s~(-1)区域内;失稳区位于高应变速率下(3~10 s~(-1))所有温度范围内;动态回复和动态再结晶是2050 Al-Li合金在稳定加工区域内主要变形机理,而在失稳区合金变形机理主要表现为流变集中。  相似文献   

13.
采用Gleeble-3500热压缩实验机对Mg-13Gd-4Y-2Zn-0.5Zr合金在温度360~480℃、应变速率0.001~1 s-1、最大变形程度为60%的条件下进行高温压缩实验研究。分析了应变速率和变形温度对该合金在高温变形时流变应力的影响,引入温度补偿应变速率因子Z构建合金高温流变应力的本构方程;研究了合金在不同压缩条件下的组织变化及动态再结晶晶粒尺寸,为后续有限元组织模拟提供了实验依据。结果表明:该合金的真应力-真应变曲线具有动态再结晶曲线的特征。动态再结晶的再结晶晶粒尺寸随温度的降低、应变速率的增大而减小;而且峰值应力也随再结晶晶粒尺寸的减小而增大。  相似文献   

14.
张楚博  米振莉  毛小玲  徐梅 《轧钢》2018,35(1):17-22
采用Gleeble-3500热模拟试验机对超高强DP980钢进行热压缩试验,研究其在变形温度为900~1 200℃、应变速率为0.05~30s~(-1)条件下的动态再结晶行为,分析了变形温度和应变速率对真应力-真应变曲线的影响。结果表明:超高强DP980钢在变形过程中,存在动态再结晶和动态回复两种软化机制,且随着温度的升高和应变速率的降低,临界应变越小,动态再结晶越容易发生;同时,得到了发生动态再结晶时的形变激活能,建立了峰值应变模型、动态再结晶临界应力模型和动态再结晶动力学模型。  相似文献   

15.
利用Gleeble-1500D热模拟试验机对Cu-1.0%Zr-0.15%Y合金进行等温热压缩实验。分析了合金变形温度为550~900℃,应变速率为0.001~10 s~(-1)条件下的真应力-真应变特征、热压缩过程中的组织演变和热变形机制。结果表明:在550~750℃时具有典型的动态回复特征,在850~900℃时具有动态再结晶热变形特征。变形温度和应变速率对Cu-1.0%Zr-0.15%Y合金有显著影响。在真应力-真应变曲线的基础上,建立等温压缩变形过程中的流变应力与应变速率和变形温度之间的本构方程,得到合金的热变形激活能Q为379.16 kJ/mol,与纯铜相比,高Zr含量Cu-1.0%Zr-0.15%Y合金热变形激活能提高了81%。添加稀土元素Y,可以细化Cu-Zr合金晶粒,促进动态结晶。  相似文献   

16.
采用热模拟试验技术对经不同净化处理的铝箔坯料(1235合金)进行热压缩变形试验,分析了不同熔体净化处理和热变形条件对该合金热压缩变形过程中流变应力的影响规律。结果表明:该合金热压缩变形过程中存在稳态流变特征;净化处理效果对1235合金高温流变应力的影响显著,净化效果越好,流变应力值更高,材料的塑韧性越好,热加工性能越好。变形温度对高温流变应力和软化过程也有明显影响,变形温度越高,流变应力越低,越易进入稳态变形;该合金是正应变速率敏感材料,其真应力水平随应变速率的增大而升高。该合金在各种热变形条件下均发生了一定程度的动态再结晶。  相似文献   

17.
利用Gleeble-3500试验机对6061铝合金进行单道次等温恒应变速率压缩试验,研究合金在应变速率为0.001~1s~(-1),温度为350~500℃热变形条件下的动态再结晶行为。统计试验所得流变应力曲线峰值应力数据,确定合金热变形激活能Q为307.528kJ·mol~(-1),建立合金在不同热变形条件下的流变应力方程,动态再结晶峰值和临界应变模型;依据流变应力曲线特征,计算合金在不同变形条件下的动态再结晶体积分数,据此建立动态再结晶动力学模型。分析流变应力曲线可知铸态6061铝合金在350~500℃下变形,应变速率较低时(0.01s~(-1)),合金组织更容易发生动态再结晶,应力软化现象更明显。  相似文献   

18.
利用等温热压缩实验,研究了TG700C合金变形温度为1050~1250℃、应变速率为1~20 s-1、变形量为60%变形条件下的热变形及动态再结晶行为。对材料高应变速率下的变形热效应进行了温升修正,获得了该合金的流变曲线和热变形本构方程,热变形过程的表观激活能为Q=624.762 k J/mol。该合金经过温升修正后的流变曲线呈现稳态的流变应力,不同变形温度和应变速率下合金的流变应力存在差异。合金的动态再结晶形核方式为应变诱导晶界迁移形核,在高温低应变速率下,动态再结晶形核容易发生,再结晶的比例随着温度的升高和应变速率的降低而提高。  相似文献   

19.
在Gleeble-1500D热/力模拟试验机上进行高温等温单道次压缩试验,探讨Cu-0.8Cr-0.3Zr-0.03P合金在变形温度和应变速率分别为650~950℃和0.001~10 s-1条件下的热变形特性。通过真应力-真应变曲线的采集数据计算出合金高温热压缩时的本构方程和热变形激活能Q,根据动态模型绘制真应变为0.3和0.5的热加工图,并结合显微组织分析合金的变形机理,确定热加工失稳区间。研究表明:功率耗散因子η随变形温度递升呈增大趋势,合金的流变软化机理由动态回复逐渐向动态再结晶转变。得出热压缩过程的的最优加工范围为:温度为730~875℃,应变速率为0.1~1 s-1。  相似文献   

20.
在温度T=250~450℃,应变速率为0.001~10s-1的条件下,利用Gleeble-3500热模拟试验机对挤压Mg-7.8%Li-4.6%Zn-0.96%Ce-0.85%Y-0.30Zr合金进行高温热压缩试验,分析流变应力曲线特点。合金的流变应力曲线表现出动态再结晶特征,动态再结晶是热变形过程中的主要软化机制。流变应力峰值随温度的降低和应变速率的增大而升高。稀土相化合物和α相促进β相的动态再结晶,使α相再结晶减缓。在热变形过程中动态再结晶迅速,流变应力曲线表现为临界应变较小,加工硬化迅速被动态软化所掩盖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号