首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
30Cr2Ni4MoV钢(%:0.15~0.16C、0.03~0.45Si、0.12~0.14Mn、0.005P、0.005~0.006S、1.62~1.72Cr、3.60~3.63Ni、0.52~0.53Mo、0.07V、≤0.005A1)由10kg真空感应炉冶炼,锻后经930℃空冷+900℃空冷+640℃空冷处理,再经850℃水淬+600℃回火调质处理。试验结果表明,当钢中的Si含量由0.03%增加至0.45%时,钢中马氏体量增加,晶粒更为粗大;钢的抗拉和屈服强度分别从922~936 MPa和868~873 MPa增至1015~1028 MPa和950~959 MPa,但平均冲击功由205 J降至154 J。  相似文献   

2.
8~10 mm J55石油套管用钢板的生产流程为铁水预处理-120 t顶底复吹转炉-LF精炼-87 mm薄板坯连铸-连轧工艺。通过在原有0.015%~0.025%Nb微合金化钢的基础上优化J55石油套管钢的成分(/%:0.16~0.18C,0.5~0.7Mn,≤0.20Si,≤0.025P,≤0.010S,0.03~0.04Cr, 0.01~0.03Ti,0.005~0.010Nb),转炉出钢加200~400 kg铝镁钙预脱氧、精炼过程喂铝线深脱氧,T[O]≤20×10-6时钙处理,板柸加热温度1 100~1 130℃,终轧855~860℃,轧后快速冷却,(610±10)℃卷取等工艺措施,成品钢板屈服强度437~465 MPa,抗拉强度549~575 MPa,伸长率30%~36%,-20℃冲击功60~96 J,180°冷弯合格,各项性能稳定。  相似文献   

3.
试验的700 MPa级低碳贝氏体钢由30 kg真空感应炉熔炼铸成断面100 mm×50 mm扁锭-轧成12mm板。通过CCT曲线和3~30℃/s冷却速度下组织的分析,研究0.01Ti-0.03Nb和0.06Ti-0.05Nb两种微合金化对(%)0.059~0.066C、1.41~1.67Mn、0.30~0.36Si、0.37~0.48Cu、0.21~0.24Ni、0.18~0.22Mo、0.000 8~0.002 2Bs、0.002 6N低碳贝氏体组织和力学性能的影响。结果表明,0.06Ti-0.05Nb钢的强度高于0.01Ti-0.03Nb钢,但前者Ti含量高,-40℃冲击功较后者低。700 MPa级低碳贝氏体钢合适的微合金化Ti-Nb成分为0.04%~0.05%Nb-0.015%~0.025%Ti。  相似文献   

4.
研究了真空感应熔炼+真空自耗重熔(VIM-VAR)和电弧炉+真空-氧脱碳+真空自耗重熔(EAF- VOD-VAR)法两种工艺冶炼的超高强度钢G50%:0.28~0.29C、1.88~1.98Si、4.45~4.49Ni、1.04~1.05Cr、0.57~0.61Mo、0.031~0.034Nb)的夹杂物和机械性能。结果表明,EAF-VOD-VAR法冶炼的G50钢夹杂物级别低于VIM-VAR法冶炼的G50钢的夹杂物级别;EAF-VOD-VAR法冶炼的1350钢的韧性(AKU2 86~88 J,KIC130~132 MPa·m1/2)明显高于VIM-VAR法冶炼的G50钢的韧性(AKU270~74 J,KIC 112~118 MPa·m1/2)。  相似文献   

5.
Nb 和热处理对 C-Mn-Si 系冷轧双相钢组织和性能的影响   总被引:1,自引:0,他引:1  
用25 kg真空感应炉冶炼的含Nb双相钢(%:0.19~0.21C、0.7~0.8Si、1.9~2.1Mn、0.02~0.04Nb)和不含Nb双相钢(%:0.17~0.19C、0.4~0.6Si、1.7~1.9Mn),经实验室双辊轧机轧成3.5 mm板,再冷轧至1.0mm和1.36 mm钢板.冷轧板通过盐浴炉加热至740~820℃缓冷至680℃,再以≥150 ℃/s冷至280℃保温240 s空冷.结果表明,随加热温度提高,铁素体-马氏体组织中的马氏体量增加;当加热温度为820℃时C-Mn-Si双相钢抗拉强度可达1 050 MPa,加Nb后由于晶粒进一步细化,820℃加热时,其抗拉强度可达1 200 MPa.  相似文献   

6.
试验钢以超临界锅炉用奥氏体耐热钢TP347H(%:0.07C、17.98Cr、10.78Ni、0.70Nb、0.0267N)为炉料,用25 kg真空感应炉在氩气保护下熔炼,并加入0~0.16%B.结果表明,当加B量≥0.02%时,试验钢奥氏体晶粒明显粗化,1 200~950 ℃锻造时锻坯开裂.当加B量约0.01%时,奥氏体耐热钢TP347H具有最佳的综合性能:钢的室温抗拉强度为615 MPa;750℃,120 MPa钢的持久寿命为230 h,伸长率为42%.  相似文献   

7.
0Cr15Ni5WMoVNb钢(%:0.068C、14.54Cr、5.32Ni、0.88W、0.92Mo、0.20V、0.10Nb)经5 t中频感应炉+2 t真空电渣重熔炉冶炼,经锻造、热轧成Φ45 mm棒材,试样经1 000℃30 min固溶空冷+-70℃2 h冷处理后进行400~600℃4 h时效空冷。试验结果表明,在450℃时效0Cr15Ni5WMoVNb钢的强度最大,以准解理断裂为主,冲击功低为40 J,随时效温度上升,冲击功显著上升,强度下降,在510℃时效该钢有良好的强韧性,抗拉强度R_m 1300 MPa,屈服强度R_(p0.2)1100 MPa,冲击能A_(KV) 100 J。  相似文献   

8.
0.153Ti-0.038Nb和0.080Ti-0.062Nb两种Ti-Nb微合金化低碳钢(/%:0.061~0.075C、0.22Si、1.76~1.77Mn、0.002~0.003S、0.006P、0.003Als、0.003 8~0.004 2N、0.004 0~0.004 5O)由50 kg真空感应炉冶炼,轧成10 mm板,终轧温度880℃,水冷至630℃。试验结果表明,两种Ti-Nb微合金化钢的析出物均为(Nb,Ti)(C,N)复合析出物;当Ti含量由0.080%增加至0.153%,同时Nb含量由0.062%降至0.038%时,钢屈服和抗拉强度分别从558 MPa和653 MPa提高至633 MPa和756 MPa,屈强比、伸长率和断面收缩率变化较小。表明,添加Ti代替部分Nb进行复合微合金化可提高钢材强度,降低生产成本。  相似文献   

9.
实验用低碳贝氏体钢(%:0.042~0.045C、1.43~1.47Mn、1.0~2.5Cu、0.29~0.30Mo、0.025~0.029Nb、0.011~0.018Ti,0.0013~0.0023B)由50 kg真空感应炉冶炼。实验结果表明,随铜含量由1.0%增加至 2.5%,8-Cu在钢中沉淀速度加快,峰值硬度增大;随Cu%的增加,轧后直接淬火(DQ)钢的屈服强度由865 MPa增 至918 MPa, DQ+500℃回火钢的屈服强度由935 MPa增至1140 MPa,但1.0%~2.5%Cu DQ+500 ℃回火钢的抗 拉强度和冲击韧性均比DQ态钢有所降低。  相似文献   

10.
通过合适的成分设计和控轧控冷工艺开发出一种综合力学性能优异的Nb-V微合金化含Cu高强度耐候钢(/%:≤0.12C,≤0.40Si,≤1.40Mn,≤0.020P,≤0.010S,0.40~0.45Cr,0.25~0.35Cu, ≥0.020Al,0.02~0.03Nb,0.02~0.03V),并对其耐蚀性能进行了研究。该高强耐候钢组织由铁素体、珠光体和贝氏体组成,抗拉强度高达697 MPa,屈强比为0.73,断后伸长率为24.6%, -40℃纵向冲击功为70.6 J。盐雾及周期浸润试验结果表明,该钢耐蚀性能显著优于Q345B,其锈层主要由Fe3O4、α-FeO(OH)和γ-FeO(OH)构成,且随着时间增加,Fe3O4相对含量增加,α-FeO(OH)变化较小,γ-FeO(OH)减少。  相似文献   

11.
李永灯  彭俊  唐科  向鑫 《特殊钢》2022,43(1):78-81
开发的110SS钢(/%:0.28 ~0.33C,0.20 ~0.30Si,0.60 ~ 1.00Mn,≤0.015P,≤0.005S,1.20 ~1.45Cr,0.65 ~0.85Mo,0.01 ~0.05Al,0.01 ~0.05Ti,0.01 ~0.05Nb,0.01 ~0.10V)Φ325 mm×55 mm厚壁...  相似文献   

12.
郜书忠  仇必宁  李军 《特殊钢》2011,32(2):34-36
TL1114Nb(%:0.07~0.13C、0.80~1.25Mn、0.10~0.30Si、≤0.010P、≤0.010S、0.03~0.05Nb、0.02~0.07Alt)钢的生产流程为100 t UHP电弧炉-LF(VD)-150 mm×150 mm连铸-连轧工艺。研制结果表明,通过采用合理的轧制加热温度(1 100~1 200℃),适当提高终轧温度(780~820℃),控制轧后冷速(喷水4 s,风冷)和卷取温度(700℃),带钢各项指标合格:TL1114Nb热轧钢带的晶粒为10~10.5级,组织为铁素体+珠光体,无异常组织,带钢的屈服强度Rel 440~460 MPa,抗拉强度Rm 530~550 MPa,伸长率A 31.5%~33.0%,冷弯d=a合格。  相似文献   

13.
殷胜  朱红丹 《特殊钢》2019,40(1):16-18
设计和开发了屈服强度750 MPa低合金高强度集装箱用钢(/%:0.06~0.09C,0.25~0.35Si,1.60~1.80Mn, ≤0.015P,≤0.003S,0.10~0.20Mo,0.05~0.06Nb,0.09~0.11Ti,≥0.0015Ca,≥0.015Alt)。试验钢的工艺流程为260 t BOF-LF-RH-230 mm板坯连铸-热轧成2~6 mm板。通过Nb-Ti复合微合金化和Ca处理,控制精轧结束温度840~880℃,层流冷却速度≥60℃/s,卷取520~580℃,热轧钢卷的冷却速度≤10℃/h等工艺措施,热轧带钢具有良好的表面质量,组织为细晶铁素体+Nb-Ti碳氮化物,力学性能为上屈服强度760~790 MPa,抗拉强度860~910 MPa,伸长率21%~25%,满足用户要求。  相似文献   

14.
试验的GH706合金(/%:0.034C、16.10Cr、41.13Ni、1.64Ti、2.93Nb、0.39Al)和改进型合金(/%:0.027C、16.30Cr、1.79Ti、2.05Nb、1.21Al)由200 kg真空感应炉熔炼并重熔成150 kg ESR锭,1 180℃ 16 h均匀化处理后锻成Φ15 mm棒材,并经980℃3 h,4 K/min冷至820℃2~10 h,空冷,720℃16 h炉冷热处理。结果表明,提高合金中的Al含量和降低Nb含量可促使γ′相析出;通过调整二级固溶处理的时间可控制η相析出,使合金具有良好的强塑性,在室温抗拉强度TS 1 200 MPa的水平下使断面收缩率接近30%。改进型合金在二级固溶处理为820℃2 h时,700℃抗拉强度为908 MPa,断面收缩率达54.8%。  相似文献   

15.
通过对压缩比、压下率和轧制温度的控制,使L450M管线钢(/%:0.06C,1.52Mn,0.19Si,0.017Ti,0.048Nb,0.028Als)获得了良好的强韧性.结果表明,200 mm坯粗轧末3道次和精轧前3道次达到20%以上的大压下率,可以使12 mm钢板在随后的冷却过程中形成细小的微米级晶粒.晶粒尺寸基...  相似文献   

16.
董方  杨洋 《特殊钢》2016,37(6):56-59
试验用409L不锈钢(/%:0.01 C,0.82~0.86Si,0.26Mn,0.002~0.006S,0.034~0.041P,11.44~11.51Cr,0.24~0.27Ti,0~0.09Ce)由10 kg真空感应炉熔炼,锻成30 mm×30 mm方坯,冷轧成2 mm钢板,1100℃ 5min退火。研究了Ce对409L钢900℃ 30min退火组织的影响和900℃-室温热疲劳性能的影响。结果表明,当钢中含0.03%Ce时409L钢退火晶粒细化,热疲劳性能最佳,当进一步增加Ce含量,退火晶粒粗化,钢的热疲劳性能逐渐降低。添加稀土元素Ce后,钢中TiN和TiN-Al2O3复合夹杂物基本消除,形成细小球形含Ce的钛氮复合夹杂物和含Ce的Al-O-Ti复合夹杂物,添加过多的Ce,使晶界夹杂物增加,降低热疲劳性能。  相似文献   

17.
按照20 t EAF→LF+VD→模铸3t钢锭→轧制Φ270 mm圆钢→斜轧穿孔→CPE轧管→在线常化工艺流程,生产Φ219 mm×20 mm 09MnNiD钢无缝管(/%:0.07~0.10C,0.25~0.35Si,1.35~1.40Mn,0.49~0.51Ni,0.020~0.035Al,≤0.02Nb,≤0.015P,≤0.006S)。通过控制EAF终点C≤0.04%和P≤0.008%,LF精炼S≤0.005%,VD≤67Pa,≥15 min,模铸过热度≤45℃,热轧后荒管冷却速度30~70℃/min,钢管常化温度910℃,开发了Φ219 mm×20 mm钢管。测试结果表明:生产的钢管显微组织为F+P,晶粒度10级,-70℃冲击功KV2≥275 J,抗拉强度503~508 MPa,屈服强度354~356 MPa,以及其化学成分、非金属夹杂物、无损检测均满足GB 150.2-2011标准要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号