首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为提高锂离子电池负极材料循环稳定性和倍率性能,采用溶剂热和高温热处理方法制备了MnTiO_3/C锂离子电池负极材料。应用场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)和恒电流循环充放电等测试方法对材料结构形貌、物相组成和电化学性能进行分析测试。TiO_2的加入和碳包覆提高了电池负极材料的循环稳定性,缓解了材料体积效应并增加了电导率。MnTiO_3/C复合材料在1 000 m A·g~(-1)的电流密度下充放电循环160次后放电比容量仍有466 m A·h·g~(-1),是一种具有良好应用前景的锂离子电池负极材料。  相似文献   

2.
通过溶剂热的方法合成了石墨烯-镍铁氧体纳米复合材料(NFR)。采用X射线衍射仪(XRD)、拉曼光谱仪(Raman)、傅立叶红外光谱仪(FT-IR)以及透射电镜(TEM)等仪器对样品的形貌和结构进行了表征,并将其作为锂离子电池负极材料组装成模拟电池,考察其电化学性能。测试结果表明:NFR纳米复合材料在100m A·g~(-1)电流密度首圈放电比容量高达1223m Ah·g~(-1),首次可逆比容量为830m Ah·g~(-1),100圈充放电后,容量几乎无衰减,保持较好的循环稳定性。这种优异的性能归功于复合材料中镍铁氧体和石墨烯之间的协同作用。  相似文献   

3.
采用简单的超声、冷冻干燥和热还原相结合的自组装方法,设计和构建了纳米硅核/间隙/无定形碳壳层/石墨烯(Si/void/C/graphene)三维有序纳米复合结构。在该结构中,纳米硅核与碳壳层之间的空隙有效避免了硅的巨大体积膨胀对碳层的破坏,大幅度提高了锂离子电池的循环稳定性;将Si/void/C纳米结构嵌入在石墨烯层与层之间,利用石墨烯卓越的导电性和柔韧性,进一步缓冲了硅材料的体积效应和提高了复合材料的导电性能。该复合材料在4200 m A·h·g~(-1)(1 C)电流密度下循环1000次后比容量仍高达1603 m A·h·g~(-1);在67 A·g~(-1)(16 C)的高倍率下,比容量仍有310 m A·h·g~(-1),显示出了在锂离子电池负极材料领域的巨大应用潜力。  相似文献   

4.
以NiCl_2·6H_2O、尿素、葡萄糖为原料采用水热法制备了NiO前体,将前体在空气中烧结最终得到NiO电极活性材料。该NiO样品具有镂空结构的类空心球形貌,且由50~100 nm初级纳米颗粒构成。对该NiO样品作为锂离子电池负极材料的储锂性能进行了研究,结果发现赝电容效应对该材料储锂容量和倍率性能有重要贡献。因独特的空心纳米结构和赝电容效应,该材料表现出出色的电化学循环稳定性和优异的大倍率充放电性能。在500m A·g~(-1)电流密度下,100圈充放电循环后放电比容量为650 m A·h·g~(-1),容量保持率达86.6%;在10 A·g~(-1)的超高倍率下,其稳定放电比容量仍高达432 m A·h·g~(-1)。  相似文献   

5.
以喷雾干燥的方法制备了锂离子电池负极用石墨烯/硅/炭复合材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)等方法表征不同石墨烯添加量对材料形貌、结构,并其电化学性能进行测试。结果表明,当石墨烯添加量为5%时复合材料的电化学性能最优异,首次充放电效率高达83.2%,在130 mA/g电流密度条件下循环25次后容量仍能保持在676.5 mA·h/g。  相似文献   

6.
将天然石墨、酚醛树脂和微米级硅粉进行球磨处理制备复合材料前驱物,再于N2气氛下700℃炭化得到硅/石墨/炭(Si/G/C)复合电极材料,采用X射线衍射仪、扫描电镜和透射电镜及电化学循环充放电对其形貌、结构及其电化学性能进行表征.结果表明,Si/G/C作为锂离子电池负极材料具有高于900 mA·h/g的可逆比容量,40次循环后保持在550 mA·h/g.对电极进行热处理后,其循环性能显著提高,40次循环后比容量保持在700 mA· h/g.扫描电镜分析结果显示,热处理后集流体上电极材料分布更均匀,因涂抹不均形成的空隙不复存在.热处理后电极结构更致密、内部黏结强度增大使其结构稳定性明显提升,是电极循环性能提高的主要原因.  相似文献   

7.
以富含蛋白质的豆腐为原料,经冷冻干燥和炭化过程制备出多孔炭材料,利用SEM、FTIR、XPS、Raman以及XRD等分析手段研究了所得炭材料的物理化学性能。将其作为锂离子电池负极材料使用时,在50 mA·g~(-1)的电流密度下,首次恒流充电容量可达817.6 m A·h·g~(-1),循环10次可维持351.9 m A·h·g~(-1)的可逆比容量,当电流密度上升至2 A·g~(-1)时,仍可维持76.5 mA·h·g~(-1)的可逆比容量,表明多孔炭材料具有良好的电化学性能。  相似文献   

8.
采用复合溶胶–凝胶法结合后续热处理,制备了具有包埋结构的氧化亚硅/碳(SiOx/C)复合负极材料。扫描电子显微镜分析结果表明:氧化亚硅纳米颗粒嵌入在无定形碳中。电化学性能测试表明:SiOx/C复合材料具有较高的比容量、优异的循环稳定性和倍率性能。材料在0.1 A/g的电流密度下100次循环后的可逆比容量为710 m A·h/g,容量几乎无衰减;在1.6 A/g的电流密度下,可逆比容量为380 m A·h/g。优异的电化学性能是由于材料的包埋结构能有效地缓冲SiOx充放电过程中的体积膨胀,保证材料的结构完整性和电化学循环稳定性。  相似文献   

9.
中空多孔碳因其低密度、大孔容、高比表面积以及优良的电导率,被视为一种理想的电负极材料。以纳米碳酸钙晶须为模板剂,负载聚多巴胺薄膜与氧化石墨烯,作为碳源与氮源,制备出晶须形中空多孔碳材料(Cw-GO),应用于锂离子电池负极。碳化过程中,碳酸钙晶须经高温分解释放出大量二氧化碳,刺破碳前体壳层,具有高效扩孔功能。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、氮气吸附-脱附仪对样品形貌和结构进行了表征,利用循环伏安(CV)、阻抗谱(EIS)、循环充放电(GCD)对样品进行电化学性能检测。结果表明,复合材料Cw-GO在500 mA·g~(-1)的电流密度下,其初始放电比容量可达到1185.9 mA·h·g~(-1),在循环200次后,比容量为921.8mA·h·g~(-1),库仑效率基本保持在99.4%,表现出优异的电化学性能。  相似文献   

10.
针对SnO_2作为锂离子电池负极材料循环性能和导电性差的问题,采用水热法制备了SnO_2/C复合物。研究了多级结构SnO_2的制备工艺并以此为基础制备了SnO_2/C复合物,通过XRD、SEM、TEM等分析方法表征了材料的结构、组成和形貌;采用循环伏安、恒流充放电等电化学方法表征SnO_2和SnO_2/C复合材料的电化学性能。实验结果表明,在200 mA·g~(-1)恒电流密度充放电时,SnO_2/C复合物电极充放电循环50次后比容量为346.1 mAh·g~(-1),远高于SnO_2电极;与此同时,无定形碳的引入使SnO_2/C复合物电极的倍率性能也显著提高。  相似文献   

11.
采用溶胶-凝胶法制备了锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_5,重点探索了溶液p H对材料物理和电化学性能的影响。其中pH=6.0时制备的材料具有最高的放电比容量、最好的倍率和循环性能。在3 C充放电电流下材料的最高放电比容量为104.2 m Ah·g~(-1),循环200次的放电比容量为95.1 mAh·g~(-1)。  相似文献   

12.
为了合成锂离子电池正极材料LiFePO_4/C,设计开发了一种水热反萃法制备LiFePO_4/C的方法,并重点研究了煅烧温度和时间对LiFePO_4/C的结构、形貌及其电化学性能的影响。分别运用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、恒电流充放电、循环伏安(CV)等测试手段对样品进行了表征。电化学测试结果表明:在煅烧温度为650℃,煅烧时间为4 h的情况下,LiFePO_4/C的电化学性能较好。在0.1、0.2、0.5和1.0 C下,其首次放电比容量分别达到151.7、154.8、149.8和139.1 m Ah·g~(-1)。除此之外,它还具有良好的容量保持率和循环性能。  相似文献   

13.
以聚苯乙烯为模板,聚吡咯为炭前驱体,制备出尺寸均匀的氮掺杂空心炭球(NHCs)。通过N_2吸脱附曲线、X射线光电子能谱、X射线衍射、扫描电子显微镜、透射电子显微镜和循环伏安法等测试方法考察了炭化温度对空心炭球的微观结构与电化学性能的影响。结果表明,制备的空心炭球直径在160 nm左右,氮原子百分含量达到9.69%。0.5 A·g~(-1)的电流密度下,800℃炭化所得空心球经过200次循环可逆容量达到493.4 mA·h·g~(-1),容量保持率为84%;在5 A·g~(-1)的电流密度下,经过1000次循环,可逆容量仍高达265.2 mA·h·g~(-1)。说明所制备的空心球拥有高的可逆容量、良好的倍率性能和长的循环寿命,是一种优异的储锂材料。  相似文献   

14.
通过分级共沉淀(分级进料)方法,结合高温热处理合成了金属元素(Ni,Mn)浓度从中心到表面呈梯度分布(中心富Ni,表面富Mn)的球形三元正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2。利用X射线衍射(XRD)、场发射扫描电镜(FESEM)、能谱仪(EDS)和电感耦合等离子质谱仪(ICP-MS)等表征了所制备材料的成分、形貌和元素分布。通过恒流充放电和循环伏安、交流阻抗等方法对材料的电化学性能进行测试。结果表明,与传统的一级共沉淀方法相比,分级共沉淀所制备材料展现出更高的倍率性能(20 C放电比容量为104.1 m Ah·g~(-1))、循环保持率(0.5 C循环200次容量保持率为95.8%)和快速充放电性能(20 C/20 C放电比容量为85.4 m Ah·g~(-1))。这种分级进料制备技术可以有效提高共沉淀法制备锂离子电池三元正极材料的电化学性能。  相似文献   

15.
采用L-半胱氨酸盐酸盐(L-Cys·HCl)辅助乙醇热成功制备Sb_2S_3纳米棒,并采用XRD、SEM、循环伏安法和恒电流充放电技术对其进行了物理及电化学性能表征。结果表明:所制备得到的Sb_2S_3材料表现出良好的电化学储锂性能,在100 m A·g~(-1)电流密度下,首次可逆比容量为823 m Ah·g~(-1),30次循环后,保持在622 m Ah·g~(-1),容量保持率为76%;当电流密度提高到500 m A·g~(-1)时,可逆比容量也在400 m Ah·g~(-1)以上。  相似文献   

16.
以对环境有害且不可降解的香烟过滤嘴为碳源,采用KOH活化法调控孔结构参数,结合高温热处理和气相沉积法制备了香烟过滤嘴基多孔炭/红磷复合材料。通过X射线衍射仪、傅里叶红外光谱仪及扫描电子显微镜表征了复合材料的组成及结构形貌,并探讨了红磷负载量对多孔炭/红磷复合材料电化学性能的影响。结果表明,香烟过滤嘴基多孔炭具有丰富的微孔结构,其作为载体能有效缓解红磷在充放电过程中体积变化较大的问题,多孔炭材料的引入大大提高了充放电比容量和循环性能。红磷负载量较低的P/AK-C-2复合材料具有较好的储锂性能,在100 m A/g电流密度下其首次充电比容量为798 m Ah/g,循环50次后仍可保持674 m Ah/g的可逆容量。  相似文献   

17.
本文研究了丙烯酸用量与预烧温度之间协同关系的复配效应。采用丙烯酸盐自模板法,制备了5V锂离子电池LiNi_(0.5)Mn_(1.5)O_4正极材料。经XRD、SEM和充放电循环测试,当n_(AA)∶n_(金属离子)=2.8∶1、预烧温度为500℃时,制备的材料为尖晶石结构,结晶度高,粒径大小均匀,在0.5C倍率的充放电循环下,首次放电容量为137mAh·g~(-1),循环50次后容量保持率为94%,电化学性能优良。  相似文献   

18.
锂硫电池因具有成本低和能量密度高等优点而受到广泛关注,但由于中间产物的溶解而产生致命的穿梭效应,严重缩短了电池的循环寿命。本文以ZIF-8为前驱体,经炭化后再硫化得到ZIFs衍生多孔炭-硫化锌复合材料(ZnS-ZDPC)。结果表明,ZnS-ZDPC/S为正极的Li-S电池在放电倍率为0.2C时,首次放电比容量为1 265.2 mA·h·g~(-1),循环300次后仍然能保持在654.1 m A·h·g~(-1),相比于ZDPC/S电极材料,容量衰减较慢,表现出较好的电化学性能。  相似文献   

19.
采用石墨化炉对腐植酸进行石墨化处理,以腐植酸基石墨化材料为原料,葡萄糖和片状石墨为中间相,经高温(750℃)炭化处理制备煤系腐植酸基炭/葡萄糖/石墨复合材料;采用扫描电子显微镜(SEM)、X射线衍射(XRD)法和电化学测试系统对该材料的形貌、微晶结构和电化学性能进行表征.结果表明:片状石墨分散在腐植酸基石墨化材料周围,且被无定型炭包覆.C-C-2复合材料作为锂离子电池的负极材料,具有较高的比容量,在0.1C倍率下的首次可逆比容量为307.3mA·h/g,首次库仑效率为76.3%;在1C和2C倍率下,50个充放电循环后,可逆比容量分别为283.3mA·h/g和152.2mA·h/g,容量保持率分别高达97.9%和97.5%;具有良好的循环稳定性及大倍率性能.  相似文献   

20.
锂离子电池硅负极材料具有很高的理论比容量(4200 m Ah/g),但其在充放电过程中巨大的体积变化导致循环性能很差,同时较低的电导率也限制了硅在锂离子电池中的应用前景。将硅与其它材料进行复合是改善硅基负极材料循环稳定性、提高其倍率性能的主要途径。文章综述了近年来硅基复合材料的研究进展,以期为硅基复合材料的研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号