首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial-mineral composites are important in the retention of heavy metals such as Pb due to their large sorption capacity under a wide range of environmental conditions. However, the partitioning of heavy metals between components in such composites is not probed directly. Using Burkholderia cepacia biofilms coated with goethite (alpha-FeOOH) particles, the partitioning of Pb(II) between the biological and iron-(oxyhydr)oxide surfaces has been measured using an X-ray spectroscopic approach. EXAFS spectra were fit to quantitatively determine the fraction of Pb(II) associated with each component as a function of pH and [Pb]. At pH < 5.5, at least 50% of the total sorbed Pb(II) is associated with the biofilm component, whereas the total uptake within the composite is dominated by goethite (> 70% Pb/goethite) above pH 6. Direct comparison can be made between the amount of Pb(II) bound to each component in the composite vs separate binary systems (i.e., Pb/biofilm or Pb/goethite). At high pH, Pb(II) uptake on the biofilm is dramatically decreased due to competition with the goethite surface. In contrast, Pb uptake on goethite is significantly enhanced at low pH (2-fold increase at pH 5) compared to systems with no complexing ligands. The mode of Pb(II)-binding to the goethite component changes from low to high [Pb]. Structural fitting of the EXAFS spectra collected from 10(-5.6) to 10(-3.6) M [Pb]eq at pH 6 shows that the Pb-goethite surface complexes at low [Pb] are dominated by inner-sphere bidentate, binuclear complexes bridging two adjacent singly coordinated surface oxygens, giving rise to Pb-Fe distances of approximately 3.9 A. At high [Pb], the dominant Pb(II) inner-sphere complexes on the goethite surface shift to bidentate edge-sharing complexes with Pb-Fe distances of approximately 3.3 A.  相似文献   

2.
The systematics and mechanisms of Zn uptake by hydroxyapatite (HAP) in preequilibrated suspensions open to PCO2 were characterized using a combination of batch sorption experiments, X-ray diffraction (XRD), and extended X-ray absorption fine structure spectroscopy (EXAFS) over a wide range of pH and Zn concentrations. Sorption isotherms of Zn(II) on HAP at pH 5.0 and 7.3 show an initial steep slope at low Zn(II) concentrations, followed by a plateau up to [Zn] < approximately 750 microM, suggesting Langmuir-type behavior. At [Zn] > 750 microM, a sharp rise in the pH 5.0 isotherm suggests precipitation, whereas slight continued uptake in the pH 7.3 isotherm is suggestive of an additional uptake mechanism. The sorption isotherm at pH 9.0 shows a steep uptake step at [Zn] < or = 0.8 microM, followed by an increasing linear trend up to [Zn] = 5 microM, without any indication of a maximum, suggesting that precipitation is an important uptake process at this pH. Zn K edge EXAFS results show a first oxygen shell at 1.96-1.98 +/- 0.02 A in sorption samples with [Zn]tot < or = 250 microM at pH 5.0, 7.3, and 9.0, consistent with tetrahedral coordination. EXAFS results reveal additional P and Ca neighbors that support formation of an inner-sphere Zn surface complex where the Zn is coordinated to surface P04 tetrahedra in a corner-sharing bidentate fashion, bridging a Ca atom. In contrast, EXAFS and XRD data indicate that precipitation of Zn3(PO4)2-4H2O (hopeite) dominates the mode of Zn uptake at [Zn]tot > or = 3 mM at pH 5.0. Principal component analysis and linear combination fits of EXAFS data reveal a mixture of inner-sphere Zn surface complexation and precipitation of Zn5(OH)6(CO3)2 (hydrozincite) in sorption samples for [Zn]tot = 5 mM at pH 7.3 and for [Zn]tot = 1 mM at pH 9.0.  相似文献   

3.
The mechanisms of the uranium(VI) sorption on schwertmannite and goethite in acid sulfate-rich solutions were studied by Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. The samples were prepared under N2 atmosphere and initial uranium(VI) concentrations of 1 x 10(-5) (pH 6.5) to 5 x 10(-5) M (pH 4.2). The ionic strength was adjusted using 0.01 M Na2SO4 or 0.01 M NaClO4, respectively. The EXAFS structural parameters for uranium(VI) sorbed on goethite in sulfate-rich, acid and near-neutral solutions indicate that uranium(VI) forms an inner-sphere, mononuclear, bidentate surface complex. This complex is characterized by a uranium-ferric-iron distance of approximately 3.45 A. Uranium(VI) sorbed onto schwertmannite in acid and sulfate-rich solution is coordinated to one or two sulfate molecules with a uranium-sulfur distance of 3.67 A. The EXAFS results indicate formation of binuclear, bidentate surface complexes and partly of mononuclear, monodentate surface complexes coordinated to the structural sulfate of schwertmannite. The formation of ternary uranium(VI)-sulfate surface complexes could not be excluded because of the uncertainty in assigning the sulfate either to the bulk structure or to adsorption reactions. The uranium(VI) adsorption onto schwertmannite in perchlorate solution occurs predominantly as a mononuclear, bidentate complexation with ferric iron due to the release of sulfate from the substrate.  相似文献   

4.
The effect of aging on Pb(II) retention in 1 microM Pb, calcite suspensions at pH 7.3, 8.2, and 9.4, under room-temperature conditions, was explored via a combination of batch sorption-desorption experiments and X-ray absorption spectroscopy (XAS). Short-term experiments, up to 12 days, reveal the predominance of an adsorption mechanism at pH 8.2, as confirmed by XAS analysis. Linear-combination fitting of XANES spectra indicates a dual sorption mechanism, with approximately 95% adsorbed and appromicately 5% coprecipitated, and approcimately 75% adsorbed and approsimately 25% coprecipitated Pb at pH 7.3 and 9.4, respectively. For long-term sorption, 60-270 days, slow continuous uptake occurs at pH 7.3 and 8.2, determined by EXAFS to be due to an adsorption mechanism. At pH 9.4, no further uptake occurs with aging, and the solid-phase distribution of Pb is commensurate with that for short-term experiments, suggesting that coprecipitated metal may alterthe calcite surface precluding further Pb sorption. Desorption experiments indicate that at pH 7.3 and 8.2 long-term sorption products-constituted primarily of Pb inner-sphere adsorption complexes-are reversibly bound. For aged pH 9.4 samples, significant sorption irreversibility indicates that the coprecipitated component is not readily exchangeable with the aqueous phase, and thus coprecipitation may be effective for long-term metal sequestration.  相似文献   

5.
Zinc sorption by a bacterial biofilm   总被引:1,自引:0,他引:1  
Microbial biofilms are present in soils, sediments, and natural waters. They contain bioorganic metal-complexing functional groups and are thought to play an important role in metal cycling in natural and contaminated environments. In this study, the metal-complexing functional groups present within a suspension of bacterial cell aggregates embedded in extracellular polymeric substances (EPS) were identified in Zn adsorption experiments conducted at pH 6.9 with the freshwater and soil bacterium Pseudomonas putida. The adsorption data were fit with the van Bemmelen-Freundlich model. The molecular speciation of Zn within the biofilm was examined with Zn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The Zn EXAFS data were analyzed by shell-by-shell fitting and linear least-squares fitting with reference spectra. Zinc sorption to the biofilm was attributed to predominantly Zn--phosphoryl (85 +/- 10 mol %) complexes, with a smaller contribution to sorption from carboxyl-type complexes (23 +/- 10 mol %). The results of this study spectroscopically confirm the importance of phosphoryl functional groups in Zn sorption by a bacterial biofilm at neutral pH.  相似文献   

6.
The objectives of this research were to understand the effect of aging time on chloropyromorphite stability by dissolution, to examine physical and chemical alterations of the pyromorphite samples, and to model the kinetic data collected from the dissolution experiments. The results of this investigation indicate that chloropyromorphite formation is kinetically rapid and that its dissolution in acid is thermodynamically stable, ideal conditions for Pb immobilization that has emerged as a potential remediation strategy. In terms of aging prior to dissolution, X-ray absorption fine structure (XAFS) and X-ray diffraction (XRD) spectroscopies were unable to distinguish fundamental differences in progressively aged samples; however, high-resolution thermogravimetric analysis (HRTGA) did demonstrate thatthe thermostability of the chloropyromorphite material increased with increasing residence time. The stirred-flow and batch dissolution studies suggest that the aging process ceased within 24 h and that the dissolution rate of the 1-day aged sample was not significantly different than the 1-year aged specimen. The amount of Pb released peaked at 21% (1-h sample, stirred-flow, pH 2.0) and was as low as 0.17% (1-year sample, batch method, pH 6.0). Postdissolution analyses of chloropyromorphite with XAFS, XRD, and HRTGA revealed no detectable chemical alterations of the pyromorphite samples signifying only release of dissolved Pb to solution and no formation of secondary products during dissolution.  相似文献   

7.
The molecular-scale immobilization mechanisms of uranium uptake in the presence of phosphate and goethite were examined by extended X-ray absorption fine structure (EXAFS) spectroscopy. Wet chemistry data from U(VI)-equilibrated goethite suspensions at pH 4-7 in the presence of ~100 μM total phosphate indicated changes in U(VI) uptake mechanisms from adsorption to precipitation with increasing total uranium concentrations and with increasing pH. EXAFS analysis revealed that the precipitated U(VI) had a structure consistent with the meta-autunite group of solids. The adsorbed U(VI), in the absence of phosphate at pH 4-7, formed bidentate edge-sharing, ≡ Fe(OH)(2)UO(2), and bidentate corner-sharing, (≡ FeOH)(2)UO(2), surface complexes with respective U-Fe coordination distances of ~3.45 and ~4.3 ?. In the presence of phosphate and goethite, the relative amounts of precipitated and adsorbed U(VI) were quantified using linear combinations of the EXAFS spectra of precipitated U(VI) and phosphate-free adsorbed U(VI). A U(VI)-phosphate-Fe(III) oxide ternary surface complex is suggested as the dominant species at pH 4 and total U(VI) of 10 μM or less on the basis of the linear combination fitting, a P shell indicated by EXAFS, and the simultaneous enhancement of U(VI) and phosphate uptake on goethite. A structural model for the ternary surface complex was proposed that included a single phosphate shell at ~3.6 ? (U-P) and a single iron shell at ~4.3 ? (U-Fe). While the data can be explained by a U-bridging ternary surface complex, (≡ FeO)(2)UO(2)PO(4), it is not possible to statistically distinguish this scenario from one with P-bridging complexes also present.  相似文献   

8.
Pb(III) sorption to hydrous amorphous SiO2 was studied as a function of pH and ionic strength using XAS to characterize the sorption products formed. Pb sorption increased with increasing pH and decreasing ionic strength. The XAS data indicated that the mechanism of Pb(II) sorption to the SiO2 surface was pH-dependent. At pH < 4.5, a mononuclear inner-sphere Pb sorption complex with ionic character dominated the Pb surface speciation. Between pH 4.5 and pH 5.6, sorption increasingly occurred via the formation of surface-attached covalent polynuclear Pb species, possibly Pb-Pb dimers, and these were the dominant Pb complexes at pH > or = 6.3. Decreasing ionic strength from I = 0.1 to I = 0.005 M NaClO4 significantly increased Pb sorption but did not strongly influence the average local coordination environment of sorbed Pb at given pH, suggesting that the formation of mononuclear and polynuclear Pb complexes at the surface were coupled; possibly, Pb monomers control the formation of Pb polynuclear species by diffusion along the surface, or they act as nucleation centers for additional Pb uptake from solution. This study shows that the effectiveness of SiO2 in retaining Pb(II) is strongly dependent on solution conditions. At low pH, Pb(II) may be effectively remobilized by competition with other cations, whereas sorbed Pb is expected to become less susceptible to desorption with increasing pH. However, unlike for Ni(II) and Co(II), no lead phyllosilicates are formed at these higher pH values; therefore, SiO2 is expected to be a less effective sink for Pb immobilization than for these other metals.  相似文献   

9.
Effects of dissolved carbonate on arsenate [As(V)] reactivity and surface speciation at the hematite-water interface were studied as a function of pH and two different partial pressures of carbon dioxide gas [P(CO2) = 10(-3.5) atm and approximately 0; CO2-free argon (Ar)] using adsorption kinetics, pseudo-equilibrium adsorption/titration experiments, extended X-ray absorption fine structure spectroscopic (EXAFS) analyses, and surface complexation modeling. Different adsorbed carbonate concentrations, due to the two different atmospheric systems, resulted in an enhanced and/or suppressed extent of As(V) adsorption. As(V) adsorption kinetics [4 g L(-1), [As(V)]0 = 1.5 mM and I = 0.01 M NaCl] showed carbonate-enhanced As(V) uptake in the air-equilibrated systems at pH 4 and 6 and at pH 8 after 3 h of reaction. Suppressed As(V) adsorption was observed in the air-equilibrated system in the early stages of the reaction at pH 8. In the pseudo-equilibrium adsorption experiments [1 g L(-1), [As(V)]0 = 0.5 mM and I = 0.01 M NaCI], in which each pH value was held constant by a pH-stat apparatus, effects of dissolved carbonate on As(V) uptake were almost negligible at equilibrium, but titrant (0.1 M HCl) consumption was greater in the air-equilibrated systems (P(CO2) = 10(-3.5) atm) than in the CO2-free argon system at pH 4-7.75. The EXAFS analyses indicated that As(V) tetrahedral molecules were coordinated on iron octahedral via bidentate mononuclear ( 2.8 A) and bidentate binuclear (approximately equal to 3.3 A) bonding at pH 4.5-8 and loading levels of 0.46-3.10 microM m(-2). Using the results of the pseudo-equilibrium adsorption data and the XAS analyses, the pH-dependent As(V) adsorption under the P(CO2) = 10(-3.5) atm and the CO2-free argon system was modeled using surface complexation modeling, and the results are consistent with the formation of nonprotonated bidentate surface species at the hematite surfaces. The results also suggest that the acid titrant consumption was strongly affected by changes to electrical double-layer potentials caused by the adsorption of carbonate in the air-equilibrated system. Overall results suggest that the effects of dissolved carbonate on As(V) adsorption were influenced by the reaction conditions [e.g., available surface sites, initial As(V) concentrations, and reaction times]. Quantifying the effects of adsorbed carbonate may be important in predicting As(V) transport processes in groundwater, where iron oxide-coated aquifer materials are exposed to seasonally fluctuating partial pressures of CO2(g).  相似文献   

10.
Mechanisms of Pb(II) sorption on a biogenic manganese oxide   总被引:3,自引:0,他引:3  
Macroscopic Pb(II) uptake experiments and Pb L3-edge extended X-ray absorption fine structure (EXAFS) spectroscopy were combined to examine the mechanisms of Pb(II) sequestration by a biogenic manganese oxide and its synthetic analogues, all of which are layer-type manganese oxides (phyllomanganates). Relatively fast Pb(II) sorption was observed, as well as extremely high sorption capacities, suggesting Pb incorporation into the structure of the oxides. EXAFS analysis revealed similar uptake mechanisms regardless of the specific nature of the phyllomanganate, electrolyte background, total Pb(II) loading, or equilibration time. One Pb-O and two Pb-Mn shells at distances of 2.30, 3.53, and 3.74 A, respectively, were found, as well as a linear relationship between Brunauer-Emmett-Teller (BET; i.e., external) specific surface area and maximum Pb(II) sorption that also encompassed data from previous work. Both observations support the existence of two bonding mechanisms in Pb(II) sorption: a triple-corner-sharing complex in the interlayers above/ below cationic sheet vacancies (N theoretical = 6), and a double-corner-sharing complex on particle edges at exposed singly coordinated -O(H) bonds (N theoretical = 2). General prevalence of external over internal sorption is predicted, but the two simultaneous sorption mechanisms can account for the widely noted high affinity of manganese oxides for Pb(ll) in natural environments.  相似文献   

11.
Adsorption mechanism of arsenic on nanocrystalline titanium dioxide   总被引:6,自引:0,他引:6  
Arsenate [As(V)] and arsenite [As(III)] interactions at the solid-water interface of nanocrystalline TiO2 were investigated using electrophoretic mobility (EM) measurements, Fourier transform infrared (FTIR) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and surface complexation modeling. The adsorption of As(V) and As(III) decreased the point of zero charge of TiO2 from 5.8 to 5.2, suggesting the formation of negatively charged inner-sphere surface complexes for both arsenic species. The EXAFS analyses indicate that both As(V) and As(III) form bidentate binuclear surface complexes as evidenced by an average Ti-As(V) bond distance of 3.30 A and Ti-As(III) bond distance of 3.35 A. The FTIR bands caused by vibrations of the adsorbed arsenic species remained at the same energy levels at different pH values. Consequently, the surface complexes on TiO2 maintained the same nonprotonated speciation at pH values from 5 to 10, and the dominant surface species were (TiO)2AsO2- and (TiO)2AsO- for As(V) and As(III), respectively. The surface configurations constrained with the spectroscopic results were formulated in the diffuse layer model to describe the adsorption behavior of As in the pH range between 4 and 12. The study suggests that TiO2 is an effective adsorbent for As removal due to its high surface area and the presence of high affinity surface hydroxyl groups.  相似文献   

12.
The effects of iron and manganese (hydr)oxide formation processes on the trace metal adsorption properties of these metal (hydr)oxides and their mixtures was investigated by measuring lead adsorption by iron and manganese (hydr)oxides prepared by a variety of methods. Amorphous iron (hydr)oxide formed by fast precipitation at pH 7.5 exhibited greater Pb adsorption (gamma(max) = 50 mmol of Pb/mol of Fe at pH 6.0) than iron (hydr)oxide formed by slow, diffusion-controlled oxidation of Fe(II) at pH 4.5-7.0 or goethite. Biogenic manganese(III/IV) (hydr)oxide prepared by enzymatic oxidation of Mn(II) by the bacterium Leptothrix discophora SS-1 adsorbed five times more Pb (per mole of Mn) than an abiotic manganese (hydr)oxide prepared by oxidation of Mn(II) with permanganate, and 500-5000 times more Pb than pyrolusite oxides (betaMnO2). X-ray crystallography indicated that biogenic manganese (hydr)oxide and iron (hydr)oxide were predominantly amorphous or poorly crystalline and their X-ray diffraction patterns were not significantly affected by the presence of the other (hydr)oxide during formation. When iron and manganese (hydr)oxides were mixed after formation, or for Mn biologically oxidized with iron(III) (hydr)oxide present, observed Pb adsorption was similar to that expected for the mixture based on Langmuir parameters for the individual (hydr)oxides. These results indicate that interactions in iron/manganese (hydr)oxide mixtures related to the formation process and sequence of formation such as site masking, alterations in specific surface area, or changes in crystalline structure either did not occur or had a negligible effect on Pb adsorption by the mixtures.  相似文献   

13.
Arsenic sorption onto maghemite potentially contributes to arsenic retention in magnetite-based arsenic removal processes because maghemite is the most common oxidation product of magnetite and may form a coating on magnetite surfaces. Such a sorption reaction could also favor arsenic immobilization at redox boundaries in groundwaters. The nature of arsenic adsorption complexes on maghemite particles, at near-neutral pH under anoxic conditions, was investigated using X-ray absorption fine structure (XAFS) spectroscopy at the As K-edge. X-ray absorption near edge structure spectra indicate that As(III) does notoxidize after 24 h in any of the sorption experiments, as already observed in previous studies of As(III) sorption on ferric (oxyhydr)oxides under anoxic conditions. The absence of oxygen in our sorption experiments also limited Fenton oxidation of As(III). Extended XAFS (EXAFS) results indicate that both As(III) and As(V) form inner-sphere complexes on the surface of maghemite, under high surface coverage conditions (approximately 0.6 to 1.0 monolayer), with distinctly different sorption complexes for As(III) and As(V). For As(V), the EXAFS-derived As-Fe distance (approximately 3.35 +/- 0.03 A) indicates the predominance of single binuclear bidentate double-corner complexes (2C). For As(III), the distribution of the As-Fe distance suggests a coexistence of various types of surface complexes characterized by As-Fe distances of approximately 2.90 (+/-0.03) A and approximately 3.45 (+/-0.03) A. This distribution can be interpreted as being due to a dominant contribution from bidentate binuclear double-corner complexes (2C), with additional contributions from bidentate mononuclear edge-sharing (2E) complexes and monodentate mononuclear corner-sharing complexes (1V). The present results yield useful constraints on As(V) and As(III) adsorption on high surface-area powdered maghemite, which may help in modeling the behavior of arsenic at the maghemite-water interface.  相似文献   

14.
Two dominant variables that control the adsorption of toxic trace metals to suspended particulate materials and aquatic surface coatings are surface composition and solution pH. A model for the pH-dependent adsorption of Pbto heterogeneous particulate surface mixtures was derived from experimental evaluation of Pb adsorption to laboratory-derived surrogates. The surrogate materials were selected to represent natural reactive surface components. Pb adsorption to both the laboratory surrogates and natural biofilms was determined in chemically defined solutions under controlled laboratory conditions. Pb adsorption was measured over a pH range of 5-8, with an initial Pb concentration in solution of 2.0 microM. The surface components considered include amorphous Fe oxide, biogenic Mn oxide produced by a Mn(II) oxidizing bacterium (Leptothrix discophora SS-1), Al oxide, the common green alga Chlorella vulgaris, and Leptothrix discophora SS-1 cells. A linearization of Pb adsorption data for each adsorbent was used to quantify the relationship between Pb adsorption and pH. The parameters for individual adsorbents were incorporated into an additive model to predict the total Pb adsorption in multiple-adsorbent natural surface coatings that were collected from Cayuga Lake, NY. Pb adsorption experiments on the natural surface coatings at variable pH were utilized to verify the additive model predictions based on the pH dependent behavior of the experimental laboratory surrogates. Observed Pb adsorption is consistent with the model predictions (within 1-24%) over the range of solution pH values considered. The experimental results indicate that the combination of Fe and biogenic Mn oxides can contribute as much as 90% of Pb adsorbed on Cayuga Lake biofilms, with the dominant adsorbent switching from Mn to Fe oxide with increasing pH.  相似文献   

15.
The interaction mechanism between Eu(III) and graphene oxide nanosheets (GONS) was investigated by batch and extended X-ray absorption fine structure (EXAFS) spectroscopy and by modeling techniques. The effects of pH, ionic strength, and temperature on Eu(III) adsorption on GONS were evaluated. The results indicated that ionic strength had no effect on Eu(III) adsorption on GONS. The maximum adsorption capacity of Eu(III) on GONS at pH 6.0 and T = 298 K was calculated to be 175.44 mg·g(-1), much higher than any currently reported. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Eu(III) adsorption on GONS was an endothermic and spontaneous process. Results of EXAFS spectral analysis indicated that Eu(III) was bound to ~6-7 O atoms at a bond distance of ~2.44 ? in the first coordination shell. The value of Eu-C bond distance confirmed the formation of inner-sphere surface complexes on GONS. Surface complexation modeling gave an excellent fit with the predominant mononuclear monodentate >SOEu(2+) and binuclear bidentate (>SO)(2)Eu(2)(OH)(2)(2+) complexes. This paper highlights the application of GONS as a suitable material for the preconcentration and removal of trivalent lanthanides and actinides from aqueous solutions in environmental pollution management.  相似文献   

16.
Surface complexation of copper(II) on soil particles: EPR and XAFS studies   总被引:1,自引:0,他引:1  
The interactions of transition metals with natural systems play an important role in the mobility and the bioavailability of these metals in soils. In this study, the adsorption of copper(II) onto natural soil particles was studied as a function of pH and metal concentration. The retention capacity of soil particles was determined at pH 6.2 to be equal to 6.7 mg of copper/g of solid. The Langmuir and Freundlich isotherm equations were then used to describe the partitioning behavior of the system at different pH values. A combination of EPR, extended X-ray absorption fine structure (EXAFS), and X-ray absorption near-edge structure (XANES) spectroscopies was used to probe the Cu atomic environment at the soil particles/aqueous interface. The spectroscopic study revealed that copper(II) ions are held in inner-sphere surface complexes. It also revealed that Cu was in an octahedral coordination with first-shell oxygen atoms. A weak tetragonal distortion was pointed out due to the Jahn-Teller effect, with a mean Cu-Oequatorial bond distance of 1.96 A and a Cu-Oaxial bond distance of 2.06 A. A detailed analysis of the spectroscopic data suggested that Cu(II) was bonded to organic matter coated onto the mineral fraction of soil particles.  相似文献   

17.
18.
The influence of soil-derived fulvic acid (SFA) on Ni(II) sorption and speciation in aqueous boehmite (gamma-AIOOH) suspensions was evaluated using a combination of sorption experiments and Ni K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy measurements. Co-sorption of SFA at the aqueous-boehmite interface modifies both the extent of Ni(II) sorption as well as the local structure of the sorbing Ni(II) ions. In SFA-free suspensions, Ni(II) sorbs by forming inner-sphere bidentate mononuclear complexes with surface aluminol groups. Addition of SFA increases Ni(II) sorption at pH conditions below the sorption edge observed in SFA-free suspensions and diminishes Ni(II) sorption at pH above the SFA-free sorption edge. When SFA is co-sorbed to boehmite, Ni(II) sorbs by forming both ligand-bridging ternary surface complexes (Ni(II)-SFA-boehmite) as well as surface complexes in which Ni(II) remains directly bonded to aluminol groups, that is, binary Ni(II)-boehmite or metal-bridging ternary surface complexes (SFA-Ni(II)-boehmite). The relative contribution of the individual sorption complexes depends heavily on geochemical conditions; the concentration of ligand-bridging complexes increases with increasing SFA sorption and decreasing pH. The local structure of sorbed Ni(II) does not change with increasing reaction time even though the extent of sorption continues to increase. This supports a slow uptake mechanism where surface or intraparticle diffusion processes are rate-limiting. This work demonstrates that the association of humic constituents with soil minerals can significantly modify the mechanisms controlling trace metal sorption and transport in heterogeneous aquatic environments.  相似文献   

19.
Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS)   总被引:1,自引:0,他引:1  
Iron sulfides are known to be efficient scavengers of heavy metals. In this study, Hg(II) sorption was investigated using synthetic nanocrystalline mackinawite (a disordered phase) as a function of initial Hg(II) concentration [Hg(II)]0, initial FeS concentration [FeS]0, total chloride concentration CIT, and pH. Hg(II) sorption mechanisms are dependent on relative concentrations of [Hg(II)]0 and [FeS]0 (the molar ratio of [Hg(II)0/[FeS]0). When the molar ratio of [Hg(II)]0/[FeS]o is as low as 0.05, adsorption is mainly responsible for Hg(II) removal, with its contribution to the overall sorption increasing at lower Cl(T). As the molar ratio increases, the adsorption capacity becomes saturated, resulting in precipitation of a sparingly soluble HgS(s). XRD analysis indicates formation of metacinnabar (beta-HgS). Concurrently with HgS(s) precipitation, the released Fe(II) from FeS(s) is resorbed by adsorption at acidic pH and either adsorption or precipitation as Fe (hydr)-oxides at neutral to basic pH. Subsequently, the Fe precipitate formed at neutral to basic pH serves as an adsorbent for Hg(II). Under the conditions where either adsorption or HgS(s) precipitation is dominant, more than 99% of [Hg(II)]0 is immobilized. When the molar ratio of [Hg(II)]0/[FeS]0 exceeds 1, the sulfide concentration is no longer sufficient for HgS(s) precipitation, and formation of chloride salts (Hg2Cl2 at acidic pH and HgCl2 x 3HgO at basic pH) occurs.  相似文献   

20.
Sequestration of Ni(II) on diatomite as a function of time, pH, and temperature was investigated by batch, XPS, and EXAFS techniques. The ionic strength-dependent sorption at pH < 7.0 was consistent with outer-sphere surface complexation, while the ionic strength-independent sorption at pH = 7.0-8.6 was indicative of inner-sphere surface complexation. EXAFS results indicated that the adsorbed Ni(II) consisted of ~6 O at R(Ni-O) ≈ 2.05 ?. EXAFS analysis from the second shell suggested that three phenomena occurred at the diatomite/water interface: (1) outer-sphere and/or inner-sphere complexation; (2) dissolution of Si which is the rate limiting step during Ni uptake; and (3) extensive growth of surface (co)precipitates. Under acidic conditions, outer-sphere complexation is the main mechanism controlling Ni uptake, which is in good agreement with the macroscopic results. At contact time of 1 h or 1 day or pH = 7.0-8.0, surface coprecipitates occur concurrently with inner-sphere complexes on diatomite surface, whereas at contact time of 1 month or pH = 10.0, surface (co)precipitates dominate Ni uptake. Furthermore, surface loading increases with temperature increasing, and surface coprecipitates become the dominant mechanism at elevated temperature. The results are important to understand Ni interaction with minerals at the solid-water interface, which is helpful to evaluate the mobility of Ni(II) in the natural environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号