首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanosized aluminum tungstate Al2(WO4)3 was prepared by co-precipitation reaction between Na2WO4 and Al(NO3)3 aqueous solutions. The powder size and shape, as well as size distribution are estimated after different conditions of powder preparation. The purity of the final product was investigated by XRD and DTA analyses, using the single crystal powder as reference. Between the specimen and the reference no difference was detected. The crystal structure of Al2(WO4)3 nanosized powder was confirmed by TEM (SAED, HRTEM). In additional, TEM locality allows to detect some W5O14 impurities, which are not visible by conventional X-ray powder diffraction and thermal analyses.  相似文献   

2.
Fusiform hexagonal prism SrCO3 microrods were prepared by a simple solvothermal route at 120 °C, and characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy. By controlling the content of ethylene glycol (EG), it was found that ethylene glycol (EG) played an important role in the formation of such SrCO3 microrods. Finally, effects of other solvents on the products, including 1,2-propanediol and glycerin, were also investigated.  相似文献   

3.
Co0.2Cu0.03Fe2.77O4 nanoparticles with different morphologies have been synthesized directly via a simple hydrothermal method. The effects of pH value, precursor concentration, reaction temperature and surfactant on the particle size were discussed. X-ray diffraction analyses showed that the as-synthesized Co0.2Cu0.03Fe2.77O4 nanoparticles possessed typical spinel structure. Scanning electron microscope images showed different morphologies of the particles, including truncated octahedron and octahedron. It was indicated that well-dispersed Co0.2Cu0.03Fe2.77O4 nanoparticles can be synthesized at pH values ranging from 11 to 13, and reaction temperature of 160 °C. The particle size decreased from 18 to 10 nm after the addition of sodium dodecyl sulphate at the pH value of 9. The magnetic measurement showed that the as-prepared Co-Cu spinel ferrite nanoparticles possessed hard magnetic property.  相似文献   

4.
Preparation of titanium diboride (TiB2) nanoparticles was carried out by volume combustion synthesis. TiO2, B2O3 and elemental Mg were mixed with 0-60% salt mixture of KCl, NaCl and CaCl2 with increment of 15% as a low melting temperature diluent. Compressed samples were synthesized in a tubular furnace at a constant heating rate under argon atmosphere. Thermal analysis of the process showed that the addition of the low melting temperature salts mixture led to a significant decrease in ignition and combustion temperatures. Synthesized samples were then leached by nitric and hydrochloric acids to remove impurities. The samples were examined by XRD, SEM and DLS analysis. The results showed the formation of fine deagglomerated particles with the addition of the salts mixture. The results revealed that 45% salts mixture had the smallest average particle size of about 90 nm.  相似文献   

5.
Nanocrystalline CeO2 powders were synthesized by the combustion reactions using citric acid and glycol as fuels and nitrate as an oxidant. The adiabatic flame temperatures in the auto ignition processes of the precursors were calculated theoretically. XRD measurements indicated that the powders produced in the combustion processes were cubic fluorite CeO2 phase. The size and morphology of the particles and extent of agglomeration in the powders were studied using transmission electron microscopy (TEM) and the particle size analyzer respectively. Blue shifts of the absorption peak of the as-prepared powders were observed.  相似文献   

6.
A new iron lead vanadate, Pb2FeV3O11, has been obtained. It melts incongruently at 650 ± 5 °C depositing two solid phases: Pb2V2O7 and Fe2O3. Pb2FeV3O11 crystallises in the monoclinic system. The infra-red spectrum and images of the new phase obtained by means of an electron scanning microscope are presented.  相似文献   

7.
In this paper, we reported the successful synthesis of hierarchical Ni11(HPO3)8(OH)6 superstructures based on nanorods via a facile hydrothermal route, employing NiCl2·6H2O and NaH2PO2·H2O as the reactants in the presences of polyvinylpyrrolidone (PVP) and CH3COONa·3H2O. The reaction was carried out at 170 °C for 10 h. HPO32− ions were provided via the dismutation reaction of H2PO2 ions in a weak basic solution. The as-obtained products were characterized by X-ray powder diffraction (XRD), energy dispersive spectrometry (EDS), field emission scanning electron microscopy (SEM), selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM). Some factors influencing the morphology of the hierarchical Ni11(HPO3)8(OH)6 nanorods, such as the reaction temperature, time, the amounts of PVP and CH3COONa, and the initial concentration of Ni2+ ions, were systematically investigated. A possible growth mechanism was proposed based on experimental results.  相似文献   

8.
The phase diagram of the Ag2Se-Ho2Se3 system in the range of 0-50 mol.% Ho2Se3 was constructed with the results of XRD and differential thermal analysis. A dimorphous compound exists in the system at the equimolar ratio of the components. The investigated part of the Ag2Se-AgHoSe2 diagram is of the eutectic type with the eutectic coordinates 7 mol.% Ho2Se3 and 1125 K. The crystal structure of the high-temperature modification of AgHoSe2 was studied by X-ray powder diffraction method. α-AgHoSe2 is described as a NaCl structure (space group ) with the lattice parameter а = 5.7623(3) Å. Atomic parameters were calculated in the isotropic approximation (RI = 0.0434 and RР = 0.0636). The crystal structure of β-AgHoSe2 was determined by X-ray structure analysis and was refined to R = 0.0487.  相似文献   

9.
New compounds: Mg3Fe4(VO4)6 and Zn3Fe4(VO4)6 were obtained from a solid state reaction. The temperatures of melting of Mg3Fe4(VO4)6 and Zn3Fe4(VO4)6 amount to 950±5 and 850±5°C, respectively. The indexing results and the calculated unit cell parameters for both compounds are given and suggest that both phases are isotypic with Mn3Fe4(VO4)6. The IR spectra of the above-mentioned compounds are presented.  相似文献   

10.
ZnWO4 powders with different morphologies were fabricated through a template-free hydrothermal method at 180 °C for 8 h in a wide pH range. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible and luminescence spectrophotometers were applied to study the effects of pH values on crystallinity, morphology, optical and luminescence properties. The XRD results showed that the WO3 + ZnWO4, ZnWO4, and ZnO phases could form after hydrothermal processing at 180 °C for 8 h with the pH values of 1, 3-11, and 13, respectively. The SEM and TEM observation revealed that the morphological transformation of ZnWO4 powders occurred with an increase in pH values as follows: star anise-, peony-, and desert rose-like microstructures and soya bean- and rod-like nanostructures. The highest luminescence intensity was found to be in sample consisting of star anise-like crystallites among all the samples due to the presence of larger particles with high crystallinity resulted from the favorable pH under the current hydrothermal conditions.  相似文献   

11.
The olive-like YF3 micro-particles were fabricated via a two-step route. The precursor NH4Y3F10 nano-cages sized 8 nm with hollow interiors were first synthesized in a solid reaction at room temperature. In the course of subsequent hydrothermal treating, the unstable NH4Y3F10 nano-cages were decomposed, resulted in the formation of Y(OH)1.63F1.37 micro-tubes. Prolonging the hydrothermal reaction induced the further decomposition of Y(OH)1.63F1.37 to produce YF3 nano-crystals, which then aggregated together forming the final olive-like YF3 micro-particles. For the Er3+/Yb3+ co-doped olive-like YF3 micro-particles, intense visible upconversion emissions were measured under 976 nm excitation owing to the partition of rare earth ions in the lattice, indicating this material a promising luminescent host.  相似文献   

12.
A novel broadband emission phosphor Ca2KMg2V3O12 was first synthesized by solution combustion method. The X-ray diffraction showed that Ca2KMg2V3O12 phase can be obtained at 600-900 °C through combustion route. The crystal structure of this material was refined by Rietveld method using powder X-ray diffraction. It crystallizes in cubic system and belongs to space group Ia3d with z = 8, a = 0.12500 nm. The excitation band of Ca2KMg2V3O12 peaks at 320 nm in a region between 260 nm and 425 nm, and the emission spectrum exhibits an intense band centered at about 528 nm covering from 400 nm to 800 nm. The colour coordinates of samples prepared at different ignition temperatures are in a range of x = 0.323-0.339, y = 0.430-0.447.  相似文献   

13.
14.
NdOHCO3 dodecahedral microcrystals with an orthorhombic structure have been successfully synthesized by the hydrothermal method used urea as the precipitator. Experimental parameters, such as the reaction temperature, the reaction time, and the molar ratio of the starting reagents were examined. The as-synthesized products were characterized by powder X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and photoluminescence. The possible growth process of NdOHCO3 dodecahedral microcrystals was discussed.  相似文献   

15.
The microspherical LiMnPO4 cathode material was successfully prepared for the first time by a simple one-step solvothermal process in the presence of critic acid. The reaction conditions (reactant concentration, reaction temperature) were used further to fabricate the size, surface coarseness and morphology of the microspherical LiMnPO4. The as-prepared microspherical LiMnPO4 at variant conditions exhibited remarkably different discharge capacity and rate capacity, indicating the potential of the suggested method in tuning the morphology and the structure of LiMnPO4 to improve its electrochemical performance.  相似文献   

16.
This work presents the crystal structure and luminescent properties of TlSrLa(AsO4)2. In this phase Tl+ ions are located in large tunnels delimited by chains of alternating (AsO4) and (Sr,La)O8 polyhedra. Thallium atoms are eightfold coordinated with C1 symmetry. Large TlO distances are observed revealing a low stereochemical activity of the 6s2 lone pair. Excitation and emission spectra of Tl+ in TlSrLa(AsO4)2 showed broad bands at lower energy than those observed in previous works. Excitation spectra are decomposed into multiple Gaussian bands and a theoretical analysis is made to explain the number of observed components. Two Gaussian components are revealed for emission spectra.  相似文献   

17.
Porous TiO2-based nanofiber was fabricated via a combined electrospinning and alkali-dissolution method. TiO2/SiO2 composite nanofiber was firstly prepared by electrospinning and sintering, and then silica was leached out with alkaline solution from the bulk of TiO2/SiO2 composite nanofiber to produce porous microstructure. The thermal decomposition and phase structure of the composite nanofiber precursor was investigated with TG/DSC and XRD, and optimal sintering temperature was obtained. SEM-EDX and FT-IR characterization show that most silica can be dissolved out from the composite nanofiber and thus porous nanofiber with excellent microstructure can be spontaneously formed. The effect of composite nanofiber composition on porous microstructure was studied, and it is found that the composite nanofiber with 20wt% silica can produce better porous microstructure compared to those with 10wt% and 30wt% silica. Meanwhile, porous TiO2 nanofiber with 20wt% silica shows higher degradation efficiency to Congo Red.  相似文献   

18.
Cobalt ethylenediammonium bis(sulfate) tetrahydrate, [NH3(CH2)2NH3][Co(SO4)2(H2O)4], has been synthesised by slow evaporation at room temperature. It crystallises in the triclinic system, space group , with the unit cell parameters: a = 6.8033(2), b = 7.0705(2), c = 7.2192(3) Å, α = 74.909(2)°, β = 72.291(2)°, γ = 79.167(2)°, Z = 1 and V = 317.16(2) Å3. The Co(II) atom is octahedrally coordinated by four water molecules and two sulfate tetrahedra leading to trimeric units [Co(SO4)2(H2O)4]. These units are linked to each other and to the ethylenediammonium cations through OW-H…O and N-H…O hydrogen bonds, respectively. The zero-dimensional structure is described as an alternation between cationic and anionic layers along the crystallographic b-axis. The dehydration of the precursor proceeds through three stages leading to crystalline intermediary hydrate phases and an anhydrous compound. The magnetic measurements show that the title compound is predominantly paramagnetic with weak antiferromagnetic interactions.  相似文献   

19.
β-Si3N4 whiskers with diameter of 0.5–2 μm and aspect ratio of 10–15 have been successfully prepared by combustion synthesis under 30–50 atm nitrogen pressure. The addition of MgSiN2 powder plays a significant role in the growth of β-Si3N4 whiskers. The as-prepared products were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM).  相似文献   

20.
Large-scale ear-like Si3N4 dendrites were prepared by the reaction of SiO2/Fe composites and Si powders in N2 atmosphere. The product was characterized by field emission scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The results reveal that the product mainly consists of ear-like Si3N4 dendrites with crystal structures, which have a length of several microns and a diameter of 100-200 nm. Nanosized ladder-like Si3N4 was also obtained when changing the Fe content in the SiO2/Fe composites. The Si3N4 nanoladders have a length of hundreds nanometers to several microns and a width of 100-300 nm. The ear-like Si3N4 dendrites are formed from a two-step growth process, the formation of inner stem structures followed by the epitaxial growth of secondary branches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号