首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the luminescence properties of (Ca1−xZnx)Ga2S4:Eu2+ phosphor as a function of Zn2+ and Eu2+ concentrations. The luminescence intensity was markedly enhanced by increasing the mole fraction of Zn2+ at Ca2+ sites. Lacking any Zn2+ ions, CaGa2S4:0.01Eu2+ converted only 18.1% of the absorbed blue light into luminescence. As the Zn2+ concentration increased, the quantum yield increased and reached a maximum of 24.4% at x = 0.1. Furthermore, to fabricate the device, the optimized green-yellow (Ca0.9Zn0.1)Ga2S4:Eu2+ phosphor was coated with MgO. White light was generated by combining the MgO-coated phosphor and the blue emission from a GaN chip.  相似文献   

2.
《Materials Research Bulletin》2013,48(11):4743-4748
We investigate the persistent luminescence in europium-doped strontium pyrophosphate upon codoping with auxiliary rare earth ions. The persistent phosphors are synthesized via solid-state reaction method under flowing N2 + H2. Under UV irradiation, broadband emission persistent luminescence located at 420 nm is observed in all of these phosphors at room temperature. The effects of auxiliary rare earth ions on Sr2P2O7:Eu2+ are discussed according to the decay curves and thermoluminescence spectra. Sr2P2O7:Eu2+,Lu3+ shows the best performance, while and La3+ and Ce3+ codoped samples are the weakest. The influence of auxiliary codopants is discussed in terms of ionic potential and ionic radius. We derive an empirical formula based on the experimental results.  相似文献   

3.
Polycrystalline Eu2+ and Dy3+ doped barium aluminate materials, BaAl2O4:Eu2+,Dy3+, were prepared with solid state reactions at temperatures between 700 and 1500 °C. The influence of the thermal treatments on the stability, homogeneity and structure as well as to the UV-excited and persistent luminescence of the materials was investigated by X-ray powder diffraction, SEM imaging and infrared spectroscopies as well as by steady state luminescence spectroscopy and persistent luminescence decay curves, respectively. The IR spectra of the materials prepared at 250, 700, and 1500 °C follow the formation of BaAl2O4 composition whereas the X-ray powder diffraction of compounds revealed how the hexagonal structure was obtained. The morphology of the materials at high temperatures indicated important aggregation due to sintering. The luminescence decay of the quite narrow Eu2+ band at ca. 500 nm shows the presence of persistent luminescence after UV irradiation. The dopant (Eu2+) and co-dopant (Dy3+) concentrations affect the crystallinity and luminescence properties of the materials.  相似文献   

4.
The valence of the europium dopant and selected rare earth co-dopants (Ce3+, Dy3+, and Yb3+) in the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials were studied by room temperature XANES measurements. The results indicated the co-existence of both divalent and trivalent europium in all the studied materials. The relative amount of Eu3+ was observed to increase upon increasing exposure to X-rays, as expected by the persistent luminescence mechanism. This suggests a simultaneous filling of oxygen vacancies initially created by the reducing preparation conditions. For the Dy and Yb co-dopants, only trivalent species were observed. On the other hand, traces of tetravalent cerium were present in the Eu,Ce co-doped materials.  相似文献   

5.
The photoluminescence and photoluminescence excitation spectra and luminescence decay kinetics of CaGa2S4:Eu2+ bulk crystals and powders ranging in particle size from 100 to 600 nm have been studied in the temperature range 77–300 K. The results indicate that the full width at half maximum of the photoluminescence band of the CaGa2S4:Eu2+ nanopowders is about twice that of the bulk crystals. Analysis of the photoluminescence spectra shows that the energy position of the emission band is almost independent of the particle size, temperature, and excitation intensity in the ranges 77–300 K and 10?3 to 106 W/cm2, respectively. The shape of the photoluminescence band is well represented by a Gaussian. The excited state lifetime of the Eu2+ ion is ~1000 ns as evaluated from the exponential portion of the luminescence decay curve.  相似文献   

6.
The polycrystalline Eu2+ and RE3+ co-doped strontium aluminates SrAl2O4:Eu2+, RE3+ were prepared by solid state reactions. The UV-excited photoluminescence, persistent luminescence and thermo-luminescence of the SrAl2O4:Eu2+, RE3+ phosphors with different composition and doping ions were studied and compared. The results showed that the doped Eu2+ ion in SrAl2O4:Eu2+, Dy3+ phosphors works as not only the UV-excited luminescent center but also the persistent luminescent center. The doped Dy3+ ion can hardly yield any luminescence under UV-excitation, but can form a electron trap with appropriate depth and greatly enhance the persistent luminescence and thermo-luminescence of SrAl2O4:Eu2+. Different co-doping RE3+ ions showed different effects on persistent luminescence. Only the RE3+ ion (e.g. Dy3+, Nd3+), which has a suitable optical electro-negativity, can form the appropriate electron trap and greatly improve the persistent luminescence of SrAl2O4:Eu2+. Based on above observations, a persistent luminescence mechanism, electron transfer model, was proposed and illustrated.  相似文献   

7.
We report on the persistent luminescence of SrAl2O4: Eu2+, Cr3+ phosphor centered at 760 nm. The phosphor was prepared by sol-gel-combustion method. Persistent luminescence from Cr3+ lasted for hundreds of seconds, comparable to the long afterglow from Eu2+ ions in the visible region based on the continuous energy transfer from Eu2+ ions to Cr3+ ions. The introduction of Dy3+ ions into the phosphor further prolonged the afterglow time of Eu2+ and Cr3+ ions through the depth control of the charge traps. The optimum doping concentrations for Eu2+, Cr3+ and Dy3+ were 1%, 2% and 1.5%, respectively.  相似文献   

8.
A new red emitting phosphor, Ca3(VO4)2:Eu3+; Mn2+, was synthesized by a citric acid sol-gel combustion method and characterized by XRD, TEM and photoluminescence (PL) spectra. The red emission located at about 613 nm was ascribed to 5D0-7F2 transition of Eu3+. And the red luminescence intensity changed with annealing temperature and concentration of Eu3+. The effect of the co-doped Mn2+ was also investigated systematically.  相似文献   

9.
Forming core–shell-structured phosphor particles is an effect way to improve the properties of the rare-earth-doped inorganic luminescent systems, as well as to achieve a reduction in the amount of expensive rare earth metal. Heterogeneous nucleation processing is a commonly used method to prepared core–shell-structured particles. A nanocomposite BaSO4/Y2O3:Eu3+ powder was prepared by coating BaSO4 submicrospheres with nano-Y2O3:Eu3+ particles via heterogeneous nucleation processing. Thermogravimetric analysis and differential scanning calorimetry (TGA/DSC) were utilized to reveal the mechanism of the homogenous precipitation reaction process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) were utilized to characterize the BaSO4/Y2O3:Eu3+ core–shell-structured phosphor particles. By controlling the hydrolysis of urea, BaSO4 particles are well coated with the shell of Y2O3:Eu3+, and the nucleation of coating materials is predominantly heterogeneous rather than homogeneous. Photoluminescence spectra were utilized as well. The BaSO4/Y2O3:Eu3+ particles show a red emission corresponding to 5D07F2 of Eu3+ under the excitation of ultraviolet.  相似文献   

10.
The electronic and defect energy level structure of polycrystalline SrAl2O4:Eu2+,R3+ persistent luminescence materials were studied with thermoluminescence and UV–VUV synchrotron radiation emission and excitation spectroscopy. Theoretical calculations using the density functional theory (DFT) were carried out simultaneously with the experimental work. The experimental band gap energy (Eg) value of 6.6 eV agrees very well with the DFT value of 6.4 eV. The 4f7 → 4f65d1 excitation bands of Eu2+ were found rather similar irrespective of the R3+ co-dopant. The trap level energy distribution depended strongly on the R3+ co-dopant except for the shallowest trap energy above the room temperature remaining the same, however. The different processes in the mechanism of persistent luminescence from SrAl2O4:Eu2+,R3+ was constructed and discussed.  相似文献   

11.
Yb3+/Tm3+/Ho3+-doped Na0.5Gd0.5WO4 phosphors were synthesized by the high-temperature solid-state method. Bright white luminescence upon 980 nm near-infrared excitation can be observed for the sample at the optimum chemical composition of Na0.5Gd0.5WO4:10%Yb3+/1%Tm3+/0.4%Ho3+, which is produced via an upconversion (UC) process by tuning the dopant ions concentration. The measured white light consists of the blue, green, and red UC emissions which correspond to the transitions 1G4 → 3H6 of Tm3+, 5F4(5S2) → 5I8, and 5F5 → 5I8 of Ho3+ ions, respectively. The calculated color coordinates display that white light can be achieved in a wide range of dopant concentrations. The UC mechanisms were also proposed based on their spectral and pumping power dependence analyses.  相似文献   

12.
The effects of charge compensation on the luminescence behavior of a red-emitting phosphor, Ca3Sr3(VO4)4:Eu3+, were investigated. It has been observed that charge compensated by monovalent ions, especially Na+, shows greatly enhanced red emission under ultraviolet excitation. It is found that Na2CO3 addition acts as a fluxing agent and plays a role in charge compensation, which clearly improves the emission intensity of Eu3+-activated Ca3Sr3(VO4)4. Enhanced emission intensity of the corresponding charge compensated phosphors under ultraviolet radiation may find application in the production of red phosphors for white light-emitting diodes.  相似文献   

13.
Eu2+,Nd3+ co-doped calcium aluminate with high brightness and long persistent luminescence was prepared by the combustion method. The luminescent properties of CaAl2O4-based luminescent materials have been studied systematically. The phosphor powders were further investigated by X-ray diffractometer (XRD), photoluminescence excitation and emission spectra (PL) and brightness meter. The analytical results indicated that the phase of CaAl2O4 was formed when the initiating combustion temperature was 400 °C. The broad band UV excited luminescence of the CaAl2O4:Eu2+,Nd3+ was observed at the blue region (λmax = 440 nm) due to transitions from the 4f65d1 to the 4f7 configuration of the Eu2+ ion. The decay time of the persistence indicated that the persistent luminescence phosphor has bright phosphorescence and maintains a long duration.  相似文献   

14.
Ho3+:SrMoO4 single crystal was grown by the Czochralski method in N2 atmosphere. The polarized absorption spectra, emission spectra and the lifetime decay curves were measured at room temperature. The Judd-Ofelt theory has been applied to analyze the absorption spectra. The spectroscopic parameters, including three intensity parameters, radiative transition rates, radiative lifetimes, fluorescent branching ratios and emission cross sections were obtained. The luminescence lifetime of the 5S2 level was determined to be 4.40 μs.  相似文献   

15.
Y2O3:Eu3+ red phosphors were prepared by surfactant assisted co-precipitation-molten salt synthesis method. The effects of surfactant content and annealing temperature on the structure and luminescence were investigated by X-ray diffraction and fluorescence spectrophotometer. The use of surfactant reduces the impurities on the surface of particles and promotes the reaction. The color purity of as-prepared Y2O3:Eu3+ red phosphors is improved with the presence of surfactant. In the excitation spectra, two strong bands at 394 and 466 nm are attributed to 7F0,1-5L6, 7F0,1-5D2 transitions of Eu3+ ions respectively. With the excitation of 394 or 466 nm, the as-fabricated samples reveal excellent red emission as high as that of samples monitored by 254 nm. Thus, the Y2O3:Eu3+ is a promising red phosphor for ultraviolet-visible light-emitting diodes.  相似文献   

16.
An efficient energy transfer from divalent europium to trivalent rare earth ions appears in the luminescence spectrum of BaY2F8 when it is simultaneously doped with Eu2+ and Ln3+ ions (Ln = Tb, Ho, Er) as a consequence of a f-f emission of Eu2+.  相似文献   

17.
In this study, KMgF3:Eu2+ luminescent nanocrystals (NCs) were prepared in water/cetyltrimethylammonium bromide (CTAB)/2-octanol microemulsions. The KMgF3:Eu2+ NCs were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), fluorescence spectrum, infrared spectroscopy (IR) and elementary analysis. The results showed that the size of the KMgF3:Eu2+ NCs was hardly affected by water content and surfactant (CTAB) concentration. The emission spectrum showed that the position of the 362 nm peak is due to the K+ sites substituted Eu2+. Two emission peaks located at 589 and 612 nm can be attributed to Eu3+, which exist at two different types of Eu3+ centers: one is Eu3+ at a K+ site, the other is clustering of Eu3+ ions in the interstices of KMgF3 host lattice.  相似文献   

18.
A spectroscopic investigation of Eu2+/Dy3+ codoped SrO-Al2O3-B2O3 glass-ceramic is presented. The sample exhibits green emission excited by ultraviolet (UV) light and near-IR femtosecond (fs) laser. The emission profile obtained by near-IR fs laser irradiation is similar to that by UV excitation, indicating that both of the emissions come from 5d → 4f transition of the Eu2+ ions. The relationship between the upconversion luminescence (UCL) intensity and pump power reveals a two-photon process in the conversion of near-IR radiation to the green emission. The possible mechanism of UCL from such glass-ceramic is proposed.  相似文献   

19.
The emission characteristics of phosphors based on alkaline and alkaline earth thiosilicates as hosts lattice are described. The influence of cationic and anionic species and also the nature of the activator Eu2+ or Ce3+ have been discussed. Each phosphor emits in the visible region. Three of the more interesting phosphors are BaSi2S5: Eu2+, SrSi2S5: Eu2+ and Sr2SiS4: Eu2+ which emit in the green, the blue-green and yellow region of the spectrum.  相似文献   

20.
《Optical Materials》2010,32(12):1751-1754
The electronic and defect energy level structure of polycrystalline SrAl2O4:Eu2+,R3+ persistent luminescence materials were studied with thermoluminescence and UV–VUV synchrotron radiation emission and excitation spectroscopy. Theoretical calculations using the density functional theory (DFT) were carried out simultaneously with the experimental work. The experimental band gap energy (Eg) value of 6.6 eV agrees very well with the DFT value of 6.4 eV. The 4f7  4f65d1 excitation bands of Eu2+ were found rather similar irrespective of the R3+ co-dopant. The trap level energy distribution depended strongly on the R3+ co-dopant except for the shallowest trap energy above the room temperature remaining the same, however. The different processes in the mechanism of persistent luminescence from SrAl2O4:Eu2+,R3+ was constructed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号