首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
使用LiFePO_4-LiMn_2O_4混合正极的锂离子电池的性能   总被引:1,自引:1,他引:0  
将LiFePO4和Li Mn2O4按78∶9的质量比混合,并用作锂离子电池正极材料。使用该混合正极的14500型电池适宜的充放电电压范围为4.20~2.50 V,在常温下以1.0C循环250次,容量保持率为87.47%;在60℃下以1.0C循环12次,容量保持率为84.62%。电池以100%SOC在60℃下贮存7 d后,容量保持率为82.50%,容量恢复率为89.01%。  相似文献   

2.
以Li Ni0.5Co0.2Mn0.3O2和Li Mn0.7Fe0.3PO4混合材料为正极活性物质、人造石墨为负极活性物质,制备锂离子电池。两种正极材料均为球形,粒径分布相近,D50分别为7.93μm和7.21μm。差示扫描量热测试结果表明:混合正极的热分解温度较高(263℃)且放热量小。分别以Li Ni0.5Co0.2Mn0.3O2、Li Mn0.7Fe0.3PO4和两者质量比为78∶22的混合材料制备电池,以1 C在3.0~4.2 V充放电,循环300次的容量保持率分别为92.8%、97.0%和97.6%。混合正极电池2 C倍率放电容量保持率为94.0%,在针刺和过充等测试过程中不起火、不爆炸。  相似文献   

3.
采用质量比为50∶50的钴酸锂和镍钴铝锂制成混合正极材料,并对其充放电曲线特征和耐过充电性能进行了研究。结果表明:与单一钴酸锂材料相比,混合材料中的镍钴铝锂在充放电过程中先主要被充电,而放电过程中,钴酸锂先主要被放电;当电池过充电4.8 V后,混合材料表现出较优异的耐过充性能。  相似文献   

4.
通过对采用不同正极材料、功能电解液制成的动力型18650锂离子样品电池进行过充电性能实验,发现不同条件制作的电池过充时具有不同的温度、电压变化特性曲线,研究分析了影响动力型18650锂离子电池的过充性能的各种因素,发现几种条件下制作的动力电池可以在过充时不发生起火、爆炸,但过充电压升到一定值后电池已不能再正常使用.要确保动力电池的安全可靠使用,还需要在盖帽及电池外部加强安全保护措施.  相似文献   

5.
概述了锂离子电池正极材料LiCoO2、LiNiO2、LiMn2O4和LiFePO4的优缺点,并综述了复合/混合正极材料的研究现状.不同晶型结构正极材料间的优化配合与材料性能的进一步改进,成为需要解决的主要问题.  相似文献   

6.
LiFePO4-LiMn2O4混合正极材料对电池性能的影响   总被引:1,自引:1,他引:0  
通过微波反应合成具有亚微米尺寸的LiFePO4/C复合材料,并将LiFePO4/C和通过高温固相法合成的LiMn2O4按照一定的质量比均匀混合用作锂离子电池正极材料.电池充放电测试表明电池的循环性能随着LiFePO4量的增加逐渐变好,当LiFePO4与LiMn2O4的质量比在3∶2时电池具有较好的循环性能和较高的比功率.交流阻抗测试表明二者混合试用可以有效地降低电极过程的电荷传递电阻.最后分析了循环性能提高的原因.  相似文献   

7.
王力臻  朱继涛  李中东  李荣福 《电池》2007,37(3):201-203
研究了过充电对MCMB电极性能的影响.在电位为-0.045 V(vs.Li/Li )时,会发生锂的沉积,且过充时间越长、倍率越高,锂的沉积质量越大.过充电后,MCMB电极的充放电性能下降.SEM与xRD的分析结果说明:过充电后MCMB电极的结构没有发生变化,性能下降是电极表面沉积的锂与电极表面形成的钝化膜所致.  相似文献   

8.
正极材料LiFe0.5-xMn0.5NixPO4/C的制备与性能   总被引:1,自引:1,他引:0  
通过机械活化、高温固相反应,合成了正极材料LiFe0.5-xMn0.5NixPO4/C(x=0、0.1)。XRD、SEM分析表明:材料均为纯相的橄榄石型,镍的掺杂使晶胞参数有所减小,并使二次颗粒更小、更均匀。循环伏安测试结果表明:镍的掺杂减轻了材料的电化学反应极化。以0.1C、0.2C、0.5C、1.0C在2.5~4.2 V充放电,LiFe0.4Mn0.5Ni0.1PO4/C的首次可逆放电比容量分别为149.0 mAh/g、145.8 mAh/g、133.1 mAh/g和124.6 mAh/g。  相似文献   

9.
针对三元动力电池充电过程可能出现起火、爆炸,通过采用不同隔膜、不同类型电解液、不同负极材料进行综合实验,对实验电芯进行1 C/5 V过充测试,实验得出合适条件的最佳耐过充电方案。  相似文献   

10.
正极材料LiFePO4/C的制备与性能   总被引:1,自引:0,他引:1  
通过机械活化、高温固相反应,合成了LiFePO4/C复合正极材料.XRD、粒度分布和SEM表明:材料为纯相的橄榄石型,碳包覆使材料的二次颗粒尺寸有所减小.电化学性能测试结果表明:碳包覆能有效降低材料的电化学极化.在2.6~4.5 V的充放电范围内,LiFePO4/C以0.2 C放电的首次可逆容量为135.41 mAh/...  相似文献   

11.
锂离子蓄电池LiCoO2正极材料的过充电行为   总被引:3,自引:0,他引:3  
研究了不同充电终止电压(分别为4.3、4.5、4.8、5.0 V)的充放电循环和不同倍率充电对钴酸锂电极性能的影响.结果表明:电池充电终止电压越高,电量转换效率越低,电极活性衰减越严重,用扫描电子显微镜法(SEM)与X射线衍射光谱法(XRD)分析说明电池性能衰退是由于LiCoO2结构变形,颗粒粉化团聚且形成惰性物质Co3O4造成的.同时,在充电终止电压为4.8 V的条件下,1.5 C充放电循环后,电池0.2 C的充放电性能下降严重.  相似文献   

12.
采用特殊共沉淀法制备出了类球形碱式碳酸钴,通过一系列煅烧工艺,最终制得高性能LiCoO2材料.同时与国内常规生产工艺,即以草酸钴为主要原料最终制得的LiCoO2材料进行了对比和分析.结果表明,以碱式碳酸钴为主要原料制备的LiCoO2材料:I003/I104、I006/I104和I006/I003值大、结晶度高、晶粒尺寸大、密度大、比表面积小、压实性能优良,具有较高的比容量和优异的循环稳定性.  相似文献   

13.
胡杨  李艳  连芳  钟盛文  刘庆国 《电池》2005,35(6):462-464
在电池串、并联使用过程中,锂离子电池的耐过充性在其正常运行时,发挥着重要作用.概述了过充电时电池内部的反应机理和提高电池耐过充性的措施.研究表明:建立内在的过充保护机制,选择具有良好热稳定性的正极材料,可以提高电池的耐过充性.采用适当的充电模式,避免高倍率充电,可以防止电池爆炸.  相似文献   

14.
过充对电动自行车用锂离子电池安全性能的影响   总被引:2,自引:1,他引:1  
从过充电池的解剖、状态对比、电性能和正负极材料的SEM图分析,确定了过充电对电动自行车用锂离子电池安全性能的影响.过充后,电池外观鼓胀明显,正极材料"外裸状态"严重,负极表面出现裂缝.XRD分析表明:过充后衍射峰右移,峰的面积和高度增加,表面生成物的晶相含量增加.  相似文献   

15.
采用高温固相法合成了LiVx Mn2-x O4/C正极材料,并通过X射线衍射(XRD)、扫描电子显微镜(SEM)以及充放电测试考察了产物的晶体结构、微观形貌以及电化学性能。实验结果表明:合成样品的颗粒大小较均匀,同时具有最佳的电化学性能,-30℃放电容量可达到额定容量的79.3%,4.8V过充循环10次后,模拟电池的容量保持率为94.8%。  相似文献   

16.
万新华  刘厌国 《电源技术》2004,28(9):538-541
包埋镍酸锂是镍酸锂表面改性后的一种新型锂离子蓄电池正极材料。用包埋镍酸锂作为正极材料,组装了AA型锂离子蓄电池,对其循环性能、高温安全性、耐过充性和钴酸锂AA电池进行了对比研究。结果表明,和钴酸锂电池相比,包埋镍酸锂电池不仅具有良好的循环性能和基本相当的高温安全性,而且表现出高得多的放电比容量和优异的耐过充性。用包埋镍酸锂作为正极材料很大程度上改善了锂离子蓄电池的性能,降低了成本,一定程度上促进了锂离子动力电池的开发。  相似文献   

17.
采用商品化的LiFePO4/C作为原料,使用水性黏结剂将此正极材料制成电极,利用扫描电镜对该电极制备前后活性材料的表面形貌进行了对比分析,并通过组装成2016扣式锂离子电池来考察该水性正极的电化学性能。通过循环伏安扫描、交流阻抗测试及恒电流充放电测试对电池的性能进行分析,结果表明,所制备的水性LiFePO4/C正极具有较好的电化学性能。且水性黏结剂工艺性能良好,可以考虑代替成本高且对环境有污染的有机黏结剂使用。  相似文献   

18.
二元掺杂LiMn2O4正极材料的研究   总被引:2,自引:0,他引:2  
高军  赵景茂  黄雅钦  左禹 《电池》2007,37(4):257-259
采用高温固相法合成了二元掺杂的锂离子电池正极材料LiMxM'yMn2-x-yO4(M=Al,Ni,Co;M'=La,Sm;x=0.01,0.02,0.08;y=0.01,0.02).使用XRD和SEM分析了正极材料的结构和形貌,结果表明:材料具有良好的尖晶石型结构,颗粒分布均匀;充放电测试表明:掺杂不同元素对LiMn2O4电化学性能影响很大;相对其他正极材料,LiCo0.08La0.02Mn1.90O4在3.0~4.3 V电压区间内具有最好的电化学性能,首次放电比容量达120 mAh/g,50次循环后的放电比容量为109 mAh/g,容量衰减率为7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号