首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper a theoretical analysis of the iterative signal reconstruction algorithm for impulsive noise mitigation in orthogonal frequency‐division multiplexing (OFDM) systems is developed. The following main results are developed: first, analytical model for the total noise in the frequency domain, and second the model for the total noise probability density function (pdf) in the frequency domain, both defined for each step of the iterative reconstruction process. Finally, based on the pdf of the total noise, explicit expressions for BER in kth iteration are defined as well. The main intention of the paper is to present the approach to theoretical analysis of the iterative impulsive noise mitigation algorithm that has not yet been appeared in the literature, because the theoretical analysis of the noise pdf during iterations has been considered as too complex a problem. Analyses and analytical results presented in the paper are given for scenario with a fixed number of noise impulses per frame. However, this is not a handicap of the proposed approach, since all presented models can be used as building blocks for scenarios with other impulsive noise distributions including Bernoulli–Gaussian and Middleton's Class A. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Clipping noise mitigation for OFDM by decision-aided reconstruction   总被引:2,自引:0,他引:2  
Clipping is often used to reduce the large peak-to-mean envelope power ratio of orthogonal frequency-division multiplexing (OFDM) signals. However, it introduces additional noise that degrades the system performance. A technique called decision-aided reconstruction (DAR) is proposed for mitigating the clipping noise. The performance of the proposed technique is evaluated for additive white Gaussian noise and static intersymbol interference channels. The effect of using a realistic channel estimate is also examined. Results show that the DAR technique can mitigate the clipping noise significantly for OFDM systems that have large block sizes  相似文献   

3.
Aiming at the impulsive noise occurring in OFDM systems,an impulsive noise mitigation algorithm based on compressed sensing theory was proposed.The proposed algorithm firstly treated the channel impulse response and the impulsive noise as a joint sparse vector by exploiting the sparsity of both them.Then the sparse Bayesian learning framework was adopted to jointly estimate the channel impulse response,the impulsive noise and the data symbols,in which the data symbols were regarded as unknown parameters.Compared with the existing impulsive noise mitigation methods,the proposed algorithm not only utilized all subcarriers but also did not use any a priori information of the channel and impulsive noise.The simulation results show that the proposed algorithm achieves significant improvement on the channel estimation and bit error rate performance.  相似文献   

4.
This letter provides a new technique to mitigate the clipping noise on pilot symbols in clipped and pilot-aided orthogonal frequency division multiplexing (OFDM) systems. The basic principle is to directly filter the clipping noise on the positions of pilots in the frequency domain before the insertion of pilots. Simulation results show that the new technique can effectively improve channel estimation and system performance.  相似文献   

5.
A low-complexity multi-antenna relaying scheme is proposed for Orthogonal Frequency Division Multiplexing (OFDM) in the presence of Class-A Impulsive Noise (IN). One way and two way relaying are considered. The signal is transmitted and received by two terminal nodes, each with a single antenna in two time phases. In the proposed design, the processing at the relay consists of Maximal-Ratio Combining (MRC) or Power-based Selection Combining (PSC) for receive combining, Amplify and Forward (AF) for power scaling, and Space Time Block Coding (STBC) for transmit diversity. Channel State Information (CSI), Discrete Fourier Transform (DFT), and Inverse Discrete Fourier Transform (IDFT) are not needed. The Selective Mapping (SLM) technique is used at the transmitter to reduce the Peak-to-Average Power Ratio (PAPR) of the OFDM signal. Then, at the receiver, the clipping technique is used to reduce the impulses that result from the impulsive noise. The proposed system reduces the complexity of the conventional system, which uses multi-relay with a single antenna. Simulation results show that the Bit Error Rate (BER) of the proposed scheme outperforms that of the conventional scheme due to the diversity inherent in the proposed scheme.  相似文献   

6.
Orthogonal frequency division multiplexing (OFDM) can be susceptible to impulsive noise arising from numerous sources in a noisy communications environment. Conventional Reed–Solomon (RS) codes are particularly useful for burst-error corrections and have been employed in OFDM systems to manage impulsive noise. The performance gains, however, have been somewhat limited given the sensitivity to other noise types typically present in a noisy channel. In this regard, a novel scheme utilizing a time-domain pre-processing mean filter in combination with RS coding is proposed for impulsive noise suppression in OFDM systems. This scheme is split into two stages. In the first stage, a proposed mean filter effectively detects and removes the impulsive noise using the measured statistics of the impulsive noise. In contrast to a conventional blanking type filter, the traditional mean replacement value is replaced by a composite comparison value (CCV). This principle creates a more accurate estimate of the original OFDM signal after impulsive noise removal. The residual impulsive noise is then managed by a RS decoder in the second stage. Our results show that this dual faceted approach improves OFDM performance when compared to filtering and coding techniques alone.  相似文献   

7.
System embedded ADC calibration for OFDM receivers   总被引:1,自引:0,他引:1  
This paper describes a background calibration technique for analog-to-digital converters (ADCs) that exploits communication protocol redundancy to measure and correct for analog circuit imperfections. In particular, we consider the implementation of a 6-bit, 500-MS/s ADC in the receiver of an ultra wideband system using orthogonal frequency division multiplexing (OFDM). The calibration is intended for a time-interleaved array of successive approximation register ADCs and cancels converter nonlinearity due to inter-channel offset mismatches. The individual channel offsets are estimated through statistical correlation, based on known pseudorandom modulation sequences used in OFDM pilot tones. Our simulation results show that the proposed calibration is capable of improving the signal-to-noise and distortion ratio from 20 to 37 dB with a tracking time constant of 85 ms, assuming an additive white Gaussian noise channel with 20-dB signal-to-noise ratio.  相似文献   

8.
A simple method of improving orthogonal frequency division multiplexing (OFDM) receiver performance in an impulsive noise environment is to precede a conventional OFDM demodulator with blanking nonlinearity. This method is widely used in practice since it is efficient and very simple to implement. However, performance analysis of this scheme has not yet appeared. In this paper, we study performance of the OFDM receiver with blanking nonlinearity in the presence of impulsive noise. Closed form analytical expressions for the signal-to-noise ratio (SNR) at the output of blanking nonlinearity and the optimal blanking threshold that maximizes SNR are derived. Simulation results are provided that show good agreement with theory if the number of OFDM subcarriers is sufficiently large.  相似文献   

9.
Closed-form expressions are derived for the error rate performance of coherent M-ary quadrature amplitude modulated (QAM) systems in the presence of an additive combination of Gaussian and highly impulsive noise, using the Fourier-Bessel series expansion method. Analytical as well as computed simulated results are presented for 16, 64, and 256 QAM systems. The analytical results demonstrate a negligible truncation error and an accuracy ranging from approximately 1 dB for the 16 QAM scheme up to 3.5 dB for the 256 QAM scheme. The numerical evaluation of the closed-form expressions has been performed much faster than the corresponding computer simulation procedure. Hence, the validity of Fourier-Bessel analysis as a fast and accurate performance evaluation tool for high-level digital modulation schemes in complex interference environments is verified  相似文献   

10.
接收机的相位噪声实际上专指频率合成器的相位噪声,而频率合成器的相位噪声是衡量其短期稳定度的一个技术指标,目前国内外的频率合成器基本采用锁相环(PLL)或多个锁相环的方式.频率合成器的频率稳定度包括长期稳定度和短期稳定度.长期稳定度一般由基准频率源(通常为恒温晶振或温度补偿晶振,或由外部基准频率源)决定,短期频率稳定度由锁相环决定(环路参数、部件如压控振荡器).相位噪声早期也称为相位抖动,在时域多用阿仑方差表示,在频域多用相位噪声(偏离载波某个频偏处的单位带宽内相位噪声功率相对主载波的功率低多少,通常用dBc/Hz表示,dBc中的c表示相对值)表示.  相似文献   

11.
This paper describes a concept and a simple estimation method for the effect of impulsive noise on the error rate of digital mobile radio. Each experiment is required to estimate the impulsive noise influence for every system since the measurements of impulsive noise have been carried out by means of the CISPR quasi-peak value method. The author showed experimentally that the impulsive noise influence could be estimated by gathering up bit errors induced by individual noise impulses when those amplitudes were evaluated by the peak value method. A simple estimation method for impulsive noise influence is proposed for the different frequency bands and modulation schemes, using the above mentioned concept. It can be shown by this method that considerable errors will occur in some cases  相似文献   

12.
Two methods are presented for analyzing the effects of phase noise on the performance of an optical heterodyne binary differential-(DPSK) system. The first method utilizes a perturbation solution for filtered phase noise. By comparing the results of this analysis with simulated results, it is shown that the perturbation solution is accurate for laser linewidths up to at least 10% of the bit rate. Using this analysis, the accuracy of the widely used approximation, whereby the effects of filtering on the magnitude of the phase-noise corrupted signal are neglected, is verified. The author's second method is based on moments of random variables. As the level of phase noise in a practical DPSK system must be small, an improved formulation for the moments of the filtered phase noise is derived. It removes the major cause of this numerical instability. A maximum-entropy probability density function estimation technique is applied to the problem of analyzing the performance of a DPSK receiver. By comparing results with those obtained using the perturbation analysis, it is found that the moment-based method is effectively limited to relatively large error probabilities  相似文献   

13.
A theory for the signal-to-noise ratio (SNR) of optical direct-detection receivers employing return-to-zero (RZ) coding (and possibly optical preamplification) is developed. The results are valid for both signal-independent noise limited and signal-dependent noise limited receivers, as well as for arbitrary optical pulse shapes and receiver filter characteristics. Even if the same receiver bandwidth is used, RZ coding is seen to perform better than nonreturn-to-zero (NRZ) coding. Asymptotic expressions for the SNR in case of very high and very low receiver bandwidths show that the full sensitivity enhancement potential of RZ coding is exhausted at fairly moderate duty cycles. A realistic example taking into account intersymbol interference (ISI) shows that a receiver sensitivity gain (compared to NRZ coding) of, e.g., 3.2 dB can be obtained in a signal-independent noise limited receiver with a bandwidth of 80% of the data rate, using a duty cycle of three  相似文献   

14.
IEEE 802.16 standard specifies two contention based bandwidth request schemes working with OFDM physical layer specification in point-to-multipoint (PMP) architecture, the mandatory one used in region-full and the optional one used in region-focused. This letter presents a unified analytical model to study the bandwidth efficiency and channel access delay performance of the two schemes. The impacts of access parameters, available bandwidth and subchannelization have been taken into account. The model is validated by simulations. The mandatory scheme is observed to perform closely to the optional one when subchannelization is active for both schemes.  相似文献   

15.
We provide expressions for the bit error rate of various transmit and receive diversity schemes for orthogonal frequency division multiplexing (OFDM) systems in the presence of frequency offset, phase noise, and channel estimation errors. The derivations are also applicable for a general multiplicative distortion of the received signal. Our results show that with perfect channel estimates, practical values of the phase noise do not significantly degrade the performance of the various diversity methods for binary phase-shift keying modulation. In contrast, the transmit diversity schemes for OFDM are much more sensitive to channel estimation errors than maximal ratio combining receive diversity.  相似文献   

16.
This paper proposes two blind carrier frequency offset (CFO) estimation schemes for differentially modulated orthogonal frequency division multiplexing (OFDM) systems. The proposed schemes estimate the fractional part of the CFO with only two consecutive OFDM blocks, and they exploit two implicit properties associated with differentially modulated OFDM (DOFDM) systems, i.e., the channel keeps constant over two consecutive OFDM blocks, and the DOFDM systems employ an M-ary phase-shift keying constellation. One of the schemes is based on the finite alphabet (FA) constraint and the other one is based on the constant modulus (CM) constraint. They provide a trade-off between the performance and computational complexity. The constrained Cramer-Rao lower bound is also derived. Several numerical examples are presented to validate the efficacy of the proposed schemes.  相似文献   

17.
The effects of the phase noise (PN) on orthogonal frequency-division multiplex modems are evaluated. Three receivers are studied: a coherent receiver, a common phase error correction receiver (which is a receiver specially designed to combat PN) and a differential receiver. The impact of the PN on the decision signal-to-noise ratio (SNR) of each of these receivers is computed as a function of the PN spectrum. The resulting formulas are extremely simple. The theory is applicable to a wide range of PN models, and unifies and extends previous results on the topic. The conditions under which the decision SNR yields correct symbol error rate predictions are discussed. Simulations are reported that confirm the results.  相似文献   

18.
This paper introduces a novel approach for denoising the images corrupted by impulsive noise (IN) by using a new nonlinear IN suppression filter, entitled k-nearest neighborhood pixels-based Adaptive-Fuzzy Filter (k-AFF). The proposed filter is based on statistical impulse detection and nonlinear filtering which uses Adaptive-Network-Based Fuzzy Inference System (ANFIS) as a missed data interpolant over the k-nearest neighbor pixels of the corrupted pixels. The impulse detection is realized by using the well-known Kolmogorov–Smirnov-based goodness-of-fit test, which yields a decision about the impulsivity of each pixel. To demonstrate the capability of k-AFF, extensive simulations were realized revealing that the proposed filter achieves a better performance than the other filters mentioned in this paper in the cases of being effective in noise suppression and detail preservation, even when the images are highly corrupted by IN.  相似文献   

19.
We consider the design of iterative receivers for space-time block-coded orthogonal frequency-division multiplexing (STBC-OFDM) systems in unknown wireless dispersive fading channels, with or without outer channel coding. First, we propose a maximum-likelihood (ML) receiver for STBC-OFDM systems based on the expectation-maximization (EM) algorithm. By assuming that the fading processes remain constant over the duration of one STBC code word and by exploiting the orthogonality property of the STBC as well as the OFDM modulation, we show that the EM-based receiver has a very low computational complexity and that the initialization of the EM receiver is based on the linear minimum mean square error (MMSE) channel estimate for both the pilot and the data transmission. Since the actual fading processes may vary within one STBC code word, we also analyze the effect of a modeling mismatch on the receiver performance and show both analytically and through simulations that the performance degradation due to such a mismatch is negligible for practical Doppler frequencies. We further propose a turbo receiver based on the maximum a posteriori-EM algorithm for STBC-OFDM systems with outer channel coding. Compared with the previous noniterative receiver employing a decision-directed linear channel estimator, the iterative receivers proposed here significantly improve the receiver performance and can approach the ML performance in typical wireless channels with very fast fading, at a reasonable computational complexity well suited for real-time implementations  相似文献   

20.
In this paper, optimized transmit schemes for multiple-input multiple-output (MIMO) systems with simplified receivers are proposed for the downlink of high-speed wireless communication systems. In these systems, MIMO signal preprocessing is performed at the transmitter or base station with the receiver at the mobile station having a simplified structure that requires only limited signal processing. An important potential application for our transmit MIMO techniques is in the downlink of high-speed wireless communication systems with Vertical Bell Laboratories Layered Space-Time (V-BLAST) or a similar technique utilized in the uplink, creating a high-speed duplex system with a simplified mobile station transceiver structure. Two approaches are introduced and these depend on whether or not receive diversity is employed at the receiver. Both methods require that channel state information be available at the transmitter. In addition, some important associated issues such as peak-to-average power ratio requirements at the transmitter and robustness to downlink channel errors are also investigated and various solutions are proposed. Simulation results are provided and these show that performance improvement can be achieved when compared with other MIMO transmit schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号