首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An automatic method for disulfide bond assignment using dimethyl labeling and computational screening of a(1) ions with customized software, RADAR, is developed. By utilization of the enhanced a(1) ions generated from labeled peptides, the N-terminal amino acids from disulfide-linked peptides can be determined. In this study, we applied this method for structural characterization of recombinant monoclonal antibodies, an important group of therapeutic proteins. In addition to a(1) ion screening and molecular weight match, new RADAR is capable of confirming the matched peptide pairs by further comparing the collision-induced dissociation (CID) fragment ions. With the N-terminal amino acid identities as a threshold, the identification of disulfide-linked peptide pairs can be achieved rapidly at a higher confidence level. Unlike most current approaches, prior knowledge of disulfide linkages or a high-end mass spectrometer is not required, and tedious work or deliberate interpretation can be avoided in this study. Our approach makes it possible to analyze unknown disulfide bonds of protein pharmaceuticals as well as their degraded forms without further protein separation. It can be used as a convenient quality examination tool during biopharmaceutical development and manufacturing processes.  相似文献   

2.
In-source decay (ISD) in matrix-assisted laser desorption/ionization (MALDI) shares some similarities with the novel fragmentation technique electron capture dissociation (ECD). In both reactions, the otherwise strong N-C(alpha) bond is cleaved, forming fragment ions of the c and z types, while labile posttranslational modifications are preserved. Therefore, it is tempting to assume that ISD and ECD have some mechanistic aspects in common. Because electrons are present in the MALDI plume, we investigated the previously suggested possibility that ISD is a variation of ECD. However, experiments with peptides with only one site for efficient protonation revealed that ISD is not caused by electron capture. Instead, ICD seems to be induced by hydrogen atoms generated by a photochemical reaction of the matrix. We provide evidence for this reaction by hydrogen/deuterium exchange experiments with peptides containing a minimal number of exchangeable hydrogen atoms. The hydrogen atom model in ECD is indirectly supported by the proposed fragmentation mechanism for ISD, because our data suggest that hydrogen radicals can induce fragmentation by cleavage of the N-C(alpha) bond, independent from their origin.  相似文献   

3.
Here we describe an algorithm for identifying peptides/ proteins of known sequence and unknown peptides from partial spectra generated by an in-source decay (ISD) technique coupled with matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. The identification of protein fragments is processed with a software program called CMATCH, which generates candidate subsequences for both known peptides/proteins and unknown peptides for the major product ions in the spectral range m/z 400-5000 and then matches these to known protein sequences contained in a reference database for the known peptides/proteins. CMATCH, which is compiled for MSDOS or WINDOWS95/NT, has two main advantages: first, the candidate subsequences are generated automatically without the need for supplementary information concerning the distribution of either N-terminal or C-terminal ions in the spectra for both known peptides/proteins and unknown peptides; second, the highest coordinated homologous sequences are picked up automatically from the reference database as the best matches with known peptides/proteins. Examples from the ISD spectra of several test proteins demonstrate the efficacy of this protein identification software.  相似文献   

4.
We have developed a pattern recognition algorithm called SALSA (scoring algorithm for spectral analysis) for the detection of specific features in tandem MS (MS-MS) spectra. Application of the SALSA algorithm to the detection of peptide MS-MS ion series enables identification of MS-MS spectra displaying characteristics of specific peptide sequences. SALSA analysis scores MS-MS spectra based on correspondence between theoretical ion series for peptide sequence motifs and actual MS-MS product ion series, regardless of their absolute positions on the m/z axis. Analyses of tryptic digests of bovine serum albumin (BSA) by LC-MS-MS followed by SALSA analysis detected MS-MS spectra for both unmodified and multiple modified forms of several BSA tryptic peptides. SALSA analysis of MS-MS data from mixtures of BSA and human serum albumin (HSA) tryptic digests indicated that ion series searches with BSA peptide sequence motifs identified MS-MS spectra for both BSA and closely related HSA peptides. Optimal discrimination between MS-MS spectra of variant peptide forms is achieved when the SALSA search criteria are optimized to the target peptide. Application of SALSA to LC-MS-MS proteome analysis will facilitate the characterization of modified and sequence variant proteins.  相似文献   

5.
Comparing the relative abundance of each protein present in two or more complex samples can be accomplished using isotope-coded tags incorporated at the peptide level. Here we describe a chemical labeling strategy for the incorporation of a single isotope label per peptide, which is completely sequence-independent so that it potentially labels every peptide from a protein including those containing posttranslational modifications. It is based on a gentle chemical labeling strategy that specifically labels the N-terminus of all peptides in a digested sample with either a d5- or d0-propionyl group. Lysine side chains are blocked by guanidination prior to N-terminal labeling to prevent the incorporation of multiple labels. In this paper, we describe the optimization of this N-terminal isotopic tagging strategy and validate its use for peptide-based protein abundance measurements with a 10-protein standard mixture. Using a results-driven strategy, which targets proteins for identification based on MALDI TOF-MS analysis of isotopically labeled peptide pairs, we also show that this labeling strategy can detect a small number of differentially expressed proteins in a mixture as complex as a yeast cell lysate. Only peptides that show a difference in relative abundance are targeted for identification by tandem MS. Despite the fact that many peptides are quantitated, only those few showing a difference in abundance are targeted for protein identification. Proteins are identified by either targeted LC-ES MS/MS or MALDI TOF/TOF. Identifications can be accomplished equally well by either technique on the basis of multiple peptides. This increases the confidence level for both identification and quantitation. The merits of ES MS/MS or MALDI MS/MS for protein identification in a results-driven strategy are discussed.  相似文献   

6.
Here we describe a new quadrupole Fourier transform ion cyclotron resonance hybrid mass spectrometer equipped with an intermediate-pressure MALDI ion source and demonstrate its suitability for "bottom-up" proteomics. The integration of a high-speed MALDI sample stage, a quadrupole analyzer, and a FT-ICR mass spectrometer together with a novel software user interface allows this instrument to perform high-throughput proteomics experiments. A set of linearly encoded stages allows sub-second positioning of any location on a microtiter-sized target with up to 1536 samples with micrometer precision in the source focus of the ion optics. Such precise control enables internal calibration for high mass accuracy MS and MS/MS spectra using separate calibrant and analyte regions on the target plate, avoiding ion suppression effects that would result from the spiking of calibrants into the sample. An elongated open cylindrical analyzer cell with trap plates allows trapping of ions from 1000 to 5000 m/z without notable mass discrimination. The instrument is highly sensitive, detecting less than 50 amol of angiotensin II and neurotensin in a microLC MALDI MS run under standard experimental conditions. The automated tandem MS of a reversed-phase separated bovine serum albumin digest demonstrated a successful identification for 27 peptides covering 45% of the sequence. An automated tandem MS experiment of a reversed-phase separated yeast cytosolic protein digest resulted in 226 identified peptides corresponding to 111 different proteins from 799 MS/MS attempts. The benefits of accurate mass measurements for data validation for such experiments are discussed.  相似文献   

7.
MS/MS fragmentation of peptides is dominated by overlapping b and y ion series. However, alternative fragmentation possibilities exist, including neutral loss. A database was generated containing 8400 MS/MS spectra of tryptic peptides assigned with high probability to an amino acid sequence (true positives) and a set of certified false (true negative) assignments for analysis of the amino terminus. A similar database was created for analysis of neutral loss at the carboxy termini using a data set of chymotryptic peptides. The analysis demonstrated that the presence of an internal basic residue, limiting proton mobility, has a profound effect on neutral loss. Peptides with fully mobile protons demonstrated minimal neutral loss, with the exception of amide bonds with proline on the carboxy terminal side, which created an intense neutral loss peak. In contrast, peptides with partial proton mobility contained many amino acids on either side of the amide bond associated with a strong neutral loss peak. Most notable among these was proline on the carboxy terminal side of an amide bond and aspartic acid on the amino terminal side of a bond. All results were found to be consistent for doubly and triply charged peptides and after adjustment for pairings across the amide bonds with particularly labile residues. The carboxy terminal of chymotryptic peptides also demonstrated significant neutral loss events associated with numerous amino acid residues. Clarification of the rules that govern neutral loss, when incorporated into analysis software, will improve our ability to correctly assign spectra to peptide sequences.  相似文献   

8.
Fast mapping of disulfide bonds in proteins containing multiple cysteine residues is often required in order to assess the integrity of the tertiary structure of proteins prone to degradation and misfolding or to detect distinct intermediate states generated in the course of oxidative folding. A new method of rapid detection and identification of disulfide-linked peptides in complex proteolytic mixtures utilizes the tendency of collision-activated peptide ions to lose preferentially side chains of select amino acids in the negative ion mode. Cleavages of cysteine side chains result in efficient dissociation of disulfide bonds and produce characteristic signatures in the fragment ion mass spectra. While cleavages of other side chains result in insignificant loss of mass and full retention of the peptide ion charge, dissociation of external disulfide bonds results in physical separation of two peptides and, therefore, significant changes of both mass and charge of fragment ions relative to the precursor ion. This feature allows the fragment ions generated by dissociation of external disulfide bonds to be easily detected and identified even if multiple precursor ions are activated simultaneously. Such broadband selection of precursor ions for consecutive activation is achieved by lowering the dc/rf amplitude ratio in the first quadrupole filter of a hybrid quadrupole time-of-flight mass spectrometer. The feasibility of the new method is demonstrated by partial mapping of disulfide bridges within a 37-kDa protein containing 16 cysteine residues and complete disulfide mapping within a lysozyme (14.5 kDa) containing 8 cysteine residues. In addition to detecting peptide pairs connected by a single external disulfide, the new method is also shown to be capable of identifying peptides containing both external and internal disulfide bonds. The two major factors determining the efficiency of disulfide mapping using the new methodology are the effectiveness of proteolysis and the ability of the resulting proteolytic fragments to form multiply charged negative ions.  相似文献   

9.
An experimental protocol was established to combine partial reduction, cyanylation, and a second modification step for the assignment of disulfide bonds in proteins that are resistant to proteolysis under native conditions. After proteolysis, disulfide bonds were assigned via MALDI mass spectrometry with subsequent semiautomatic interpretation using the program SearchXLinks, which enumerates all possible combinations of proteolytic fragments for all observed monoisotopic masses. The putative assignment of disulfide bonds was confirmed by ISD and PSD fragmentation of the corresponding protonated molecules.  相似文献   

10.
Z Zhang  H Ye  J Wang  L Hui  L Li 《Analytical chemistry》2012,84(18):7684-7691
Herein, we report a pressure-assisted capillary electrophoresis-mass spectrometric imaging (PACE-MSI) platform for peptide analysis. This new platform has addressed the sample diffusion and peak splitting problems that appeared in our previous groove design, and it enables homogeneous deposition of the CE trace for high-throughput MALDI imaging. In the coupling of CE to MSI, individual peaks (m/z) can be visualized as discrete colored image regions and extracted from the MS imaging data, thus eliminating issues with peak overlapping and reducing reliance on an ultrahigh mass resolution mass spectrometer. Through a PACE separation, 46 tryptic peptides from bovine serum albumin and 150 putative neuropeptides from the pericardial organs of a model organism blue crab Callinectes sapidus were detected from the MALDI MS imaging traces, enabling a 4- to 6-fold increase of peptide coverage as compared with direct MALDI MS analysis. For the first time, quantitation with high accuracy was obtained using PACE-MSI for both digested tryptic peptides and endogenous neuropeptides from complex biological samples in combination with isotopic formaldehyde labeling. Although MSI is typically employed in tissue imaging, we show in this report that it offers a unique tool for quantitative analysis of complex trace-level analytes with CE separation. These results demonstrate a great potential of the PACE-MSI platform for enhanced quantitative proteomics and neuropeptidomics.  相似文献   

11.
A matrix-assisted laser desorption/ionization (MALDI) ion trap mass spectrometer of new design is described. The instrument is based on a commercial Finnegan LCQ ion trap mass spectrometer to which we have added a MALDI ion source that incorporates a sample stage constructed from a compact disk and a new ion transmission interface. The ion interface contains a quadrupole ion guide installed between the skimmer and the octapoles of the original instrument configuration, allowing for operation in both MALDI and electrospray ionization modes. The instrument has femtomole sensitivity for peptides and is capable of collecting a large number of MALDI MS and MALDI MS/MS spectra within a short period of time. The MALDI source produces reproducible signals for 10(4)-10(5) laser pulses, enabling us to collect MS/MS spectra from all the discernible singly charged ions detected in a MS peptide map. We describe the different modes of the instrument operation and algorithms for data processing as applied to challenging protein identification problems.  相似文献   

12.
In-source decay (ISD) in MALDI leads to c- and z-fragment ion series enhanced by hydrogen radical donors and is a useful method for sequencing purified peptides and proteins. Until now, most efforts to improve methods using ISD concerned instrumental optimization. The most widely used ISD matrix is 2,5-dihydroxybenzoic acid (DHB). We present here a rational way to select MALDI matrixes likely to enhance ISD for top-down proteomic approaches. Starting from Takayama's model (Takayama, M. J. Am. Soc. Mass Spectrom. 2001, 12, 1044-9), according to which formation of ISD fragments (c and z) would be due to a transfer of hydrogen radical from the matrix to the analyte, we evaluated the hydrogen-donating capacities of matrixes, and thus their ISD abilities, with spirooxazines (hydrogen scavengers). The determined hydrogen-donating abilities of the matrixes are ranked as follows: picolinic acid (PA) > 1,5-diaminonaphtalene (1,5-DAN) > DHB > sinapinic acid > alpha-cyano-4-hydroxycinnamic acid. The ISD enhancement obtained by using 1,5-DAN compared to DHB was confirmed with peptides and proteins. On that basis, a matrix-enhanced ISD approach was successfully applied to sequence peptides and proteins up to approximately 8 kDa. Although PA alone is not suitable for peptide and protein ionization, ISD signals could be further enhanced when PA was used as an additive to 1,5-DAN. The optimized matrix preparation was successfully applied to identify larger proteins by large ISD tag researches in protein databases (BLASTp). Coupled with an adequate separation method, ISD is a promising tool to include in a top-down proteomic strategy.  相似文献   

13.
Monobromobimane (MBB) is a lipophilic reagent that selectively modifies free cysteine residues in proteins. Because of its lipophilic character, MBB is capable of labeling cysteine residues in membrane proteins under native conditions. Reaction of MBB with the sulfhydryl groups of free cysteines leads to formation of highly fluorescent derivatives. Here we describe a procedure for the detection and relative quantitation of MBB-labeled cysteines using fluorescence and mass spectrometric analyses, which allow determination of free cysteine content and unambiguous identification of MBB-modified cysteine residues. We have applied this approach to the analysis of the free and redox-sensitive cysteine residues of a large membrane protein, the sarcoplasmic reticulum Ca2+ release channel with a molecular mass of 2.2 million Da. Labeling was performed under physiologic conditions where the channel complex is in its native environment and is functionally active. The purified MBB-labeled channel complex was enzymatically digested, and the resulting peptides were separated by reversed-phase high-performance chromatography. MBB-labeled peptides were detected by fluorescence and identified by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Under MALDI conditions, partial photolytic fragmentation of the MBB-peptide bound occurred, thus allowing convenient screening for the MBB-modified peptides in the MS spectrum by detection of the specific mass increment of 190.07 Da for MBB-modified cysteine residues. Modification of the peptides was further confirmed by tandem mass spectrometric analysis, utilizing sequencing information and the presence of the specific immonium ion for the MBB-modified cysteine residues at m/z 266.6. Quantitative information was obtained by comparison of both fluorescence and MS signal intensities of MBB-modified peptides. Combination of fluorescence with MS detection and analysis of MBB-labeled peptides supported by a customized software program provides a convenient method for identifying and quantifying redox-sensitive cysteines in membrane proteins of native biological systems. Identification of one redox-sensitive cysteine (2327) in the native membrane-bound sarcoplasmic reticulum Ca2+ release channel is described.  相似文献   

14.
Progress in high-throughput MALDI-TOFMS analysis, especially in proteome applications, requires development of practical and efficient procedures for the preparation of proteins and peptides in a form suitable for high acquisition rates. These methods should improve successful identification of peptides, which depends on the signal intensity and the absence of interfering signals. Contamination of MALDI samples with alkali salts results in reduced MALDI peptide sensitivity and causes matrix cluster formation (widely reported for CHCA matrix) observed as signals dominating in the range below m/z 1200 in MALDI spectra. One way to remove these background signals, especially for concentrations of peptides lower than 10 fmol/microL, is to wash matrix/sample spots after peptide cocrystallization on the MALDI plate with deionized water prior to analysis. This method takes advantage of the low water solubility of the CHCA compared to its alkali salts. We report here that the application of some ammonium salt solutions, such as citrates and phosphates, instead of deionized water greatly improves the efficiency of this washing approach. Another way to reduce matrix cluster formation is to add ammonium salts as a part of the MALDI matrix. The best results were obtained with monoammonium phosphate, which successfully suppressed matrix clusters and improved sensitivity. Combining both of these approaches-the addition of ammonium salts in the CHCA matrix followed by one postcrystallization washing step with ammonium buffer-provided a substantial ( approximately 3-5-fold) improvement in the sensitivity of MALDI-MS detection compared to unwashed sample spots. This sample preparation method resulted in improved spectral quality and was essential for successful database searching for subnanomolar concentrations of protein digests.  相似文献   

15.
MALDI mass spectrometry imaging (MSI) is a promising technique in the field of molecular (immuno)histology but is confronted with the problematic large-scale identification of peptides from thin tissue sections. In this study we present a workflow that significantly increased the number of identified peptides in a given MALDI-MSI data set and we evaluated its power concerning relative peptide quantifications. Fourier transform mass spectrometry (FTMS) profiling on matrix-coated thin tissue sections allowed us to align spectra of different MS sources, matching identical peaks in the process, thus linking MSI data to tandem mass spectrometry (MS/MS) on one hand and semiquantitative liquid chromatography (LC)/MS data on the other. Bonanza clustering was applied in order to group MS/MS spectra of structurally related peptides, making it possible to infer the identity of MSI-detected compounds based on identified members within the same cluster, effectively increasing the number of identifications in a single MSI data set. Out of 136 detected peptides with MALDI-MSI, we were able to identify 46 peptides. For 31 of these, a LC/quadrupole time-of-flight (QTOF) counterpart was detected, and we observed similar obese (ob/ob) to wild-type (wt) peak intensity ratios for 18 peptides. This workflow significantly increased the number of identifications of peptide masses detected with MALDI-MSI and evaluated the power of this imaging method for relative quantification of peptide levels between experimental conditions.  相似文献   

16.
Tyrosine-O-sulfated peptides were studied by nanoESI Q-TOF mass spectrometry and were found to exhibit an abundant loss of SO3 in positive ion mode under the usually nonfragmenting conditions of survey spectrum acquisition. A new strategy for the detection of tyrosine-O-sulfated peptides in total protein digests was designed based on exhaustive product ion scanning at the collision offset conditions typical for the recording of survey spectra (minimum collision offset). From these data, Q-TOF neutral loss scans for loss of 80/z and Q-TOF precursor ions scans were extracted. The specificity of this approach for analysis of tyrosine-O-sulfation was tested using a tryptic digest of bovine serum albumin spiked with sulfated hirudin (1:1 and 1000:1 molar ratio of BSA to sulfated hirudin, respectively) and using an in-solution digest of the recombinant extracellular domain of thyroid stimulating hormone receptor (ECD-TSHr). For both examples, the combination of in silico neutral loss scans for 80/z and subsequent in silico precursor ion scans resulted in a specific identification of sulfated peptides. In the analysis of recombinant ECD-TSHr, a doubly sulfated peptide could be identified in this way. Surprisingly, approximately 1/4 of the product ion spectra acquired from the tryptic digest of ECD-TSHr at minimum collision offset exhibited sequence-specific ions suitable for peptide identification. Complementary ion pairs were frequently observed, which either were b2/y(max-2) pairs or were induced by cleavage N-terminal to proline. MS/MS analysis at minimum collision offset followed by extraction of neutral loss and precursor ion scans is ideally suited for highly sensitive detection of analyte ions which exhibit facile gas-phase decomposition reactions.  相似文献   

17.
Liquid chromatography with time-of-flight mass spectrometry (TOF-MS) and quadrupole-time-of-flight (Q-TOF) mass spectrometry/mass spectrometry (MS/MS) were used for the accurate mass analysis of sulfadimethoxine in pond water of a fish hatchery. Sulfadimethoxine is the most important sulfa antimicrobial used in aquaculture to treat bacterial disease in a wide variety of fish. Because correct identification is essential to environmental monitoring of antimicrobial pharmaceuticals, accurate mass analyses (TOF and Q-TOF-MS/MS) were compared to nominal mass measurement (quadrupole ion trap). It was known that all six members of the sulfa antimicrobial family gave a common 6-sulfanilamido ion at a nominal mass of m/z 156; thus, this ion was the focus of TOF confirmation (exact mass 156.0119 u) along with the protonated molecule (exact mass 311.0814 u). In the process of accurate mass confirmation of the 156 m/z fragment ion, a second isobaric ion (exact mass m/z 156.0773), was discovered at the same nominal mass, which was not differentiated by quadrupole ion trap. The structure was assigned as 2-4-dimethoxypyridine and is exactly the other protonated half of the sulfadimethoxine molecule. This discovery led to the subsequent use of Q-TOF-MS/MS and high-resolution identification of five other important ion fragments for the identification of sulfadimethoxine in pond water at environmental concentrations. The caveats of using low-resolution mass spectrometry without MS/MS for environmental monitoring are discussed in the light of high profile monitoring of sulfa antimicrobial pharmaceuticals in the aquatic environment.  相似文献   

18.
A novel extension of the "top-down" approach is introduced for the selective characterization of protein termini that does not involve proteolytic digestion steps. N- and C-terminal peptides were generated from intact proteins in the mass spectrometer and further analyzed by MS/MS-an approach referred to as T(3)-sequencing. N-terminal and C-terminal fragment ion series were obtained by the pseudo-MS/MS technique in-source decay (ISD) on a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF MS). These ions provided near-terminal sequence tags from the undigested protein in the ISD spectrum acquired in reflector mode and allowed to screen for the proper processing state of the terminus with respect to a reference sequence. In the second step of T(3)-sequencing, the precursor ions, which have been generated by ISD and which included the N- or C-terminal sequence, were selected in the timed ion gate of a MALDI-TOF/TOF mass spectrometer for MS/MS analysis. These spectra allowed identification of the protein, the proper definition of both termini, and allowed confirmation of suspected terminal modifications. T(3)-Sequencing appears to be an alternative to classical Edman sequencing, which is fast and even permits the analysis of N-terminally blocked proteins and their C-terminus.  相似文献   

19.
Primary protein sequences were determined for both peptides and enzymatically digested proteins by rapid linked-scan (B/E) liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) at the low-picomole level (10-50 pmol). During the course of a single LC/MS/MS analysis, we demonstrated that it is possible to generate interpretable collision-induced dissociation spectra of the eluting proteolytic peptides. Molecular weights of tryptic peptides were established by using 1/10 of the protein digest by operating in the capillary LC/frit-FABMS mode. Peptides exhibiting the strongest MH+ ions were then selected for subsequent LC/MS/MS analysis (typically 1/5 of the remaining protein digest). Elution times for each chromatographic peak were generally greater than 30 s. It was therefore possible to obtain a minimum of six B/E fast linked-scan spectra during the course of elution of each peptide component. Typically, B/E linked scans of the greatest ion abundance (obtained at the chromatographic peak maximum) were averaged to enhance the signal/noise ratio at these low-picomole levels. Unit resolution was observed for product ions below m/z 1000. Rapid linked scanning by LC/frit-FABMS/MS provided mass assignments for product ions within 0.2-0.3 amu of theoretical values. Side-chain fragment ions (wn and dn) were also observed, which allowed for the differentiation of isobaric amino acids (e.g., leucine and isoleucine). Examples of the application of this fast linked-scan technique to LC/MS/MS are presented for complex mixtures of unknown peptides and the tryptic digestion of phosphorylated beta-casein.  相似文献   

20.
Shin YS  Moon JH  Kim MS 《Analytical chemistry》2011,83(5):1704-1708
Nitration of tyrosine residues in proteins is an important post-translational modification related to various diseases such as Alzheimer's. In this work, efficient and selective photodissociation (PD) at 355 nm was observed for [M + H](+), [M + H - 16](+), and [M + H - 32](+) generated by matrix-assisted ultraviolet laser desorption ionization (UV-MALDI) of tyrosine-nitrated peptides (nitropeptides). Product ion spectra obtained by post-source PD at this wavelength contained useful information on the amino acid sequence. The spectra for nitropeptides obtained with 355 nm irradiation inside the ion source (MALDI/in-source PD) displayed characteristic triplet patterns due to PD of the above ions. For peptides displaying prominent signal in a MALDI mass map of a tryptic mixture, which are mostly those with arginine at the C-terminus, in-source PD allowed positive identification of their tyrosine-nitrated forms. Identification of such nitropeptides was possible at the 10 fmol level (in tryptic digest of 100 fmol BSA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号