首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
高岩  贺艳 《建筑》2022,(1):35-36
建筑行业承载着我国“碳达峰、碳中和”目标实现的重要任务。2018年,全国建筑全过程碳排放总量为49.3亿吨,占全国碳排放比重的51.3%。其中,建材生产阶段占比28.3%,建筑运行阶段占比21.9%。运行阶段能耗基本用于建筑本体、供能、用能组成的建筑能源系统。可见,如何使建筑能源系统低碳发展成为实现我国“双碳”目标所要解决的迫切问题。  相似文献   

2.
公共建筑是节约能源资源的重要领域,对全社会的节能减排起着引领作用。选取寒冷地区一栋办公建筑,对其用能情况进行实地调研和数据收集,采用碳排放系数法对全寿命周期的碳排放量进行计算,全面解析建筑全寿命周期碳排放的构成,对建材生产及运输阶段、建造阶段、运行阶段及拆除阶段进行减碳潜力研究。结果表明:当建筑废弃物回收比例提高1倍时,未来同体量建筑建材生产及运输阶段的碳排放量减少0.28%;当建筑的使用年限从50年延长至100年时,碳排放强度减少14%。  相似文献   

3.
建筑的物化阶段具有碳排放时间集中、排放量大的特点,是应对气候变化和节能减排的关键阶段。因此通过界定建筑物化阶段碳排放的系统边界,采用简化的生命周期评价方法,可以在建筑方案设计中快速计算建筑物化阶段碳排放量。本文利用基于过程的清单分析方法,研究了129栋住宅建筑在物化阶段的建材碳排放量。统计结果显示,住宅建筑在物化阶段建筑材料的碳排放量按面积加权平均值为514.66 kg CO_2e/m~2。其中,钢、商品砼、墙体材料、砂浆、铜芯导线电缆、建筑陶瓷、PVC管材、保温材料、门窗和水性涂料十类建材的碳排放量达到了建筑物化阶段总建材碳排放量的99%,是物化阶段碳排放最为主要的建材。其中,土建工程中钢、商品砼和砂浆这几种主要建材碳排放量在砖混结构、剪力墙结构、框架结构和框剪结构的住宅建筑中趋势依次递增。在建筑方案设计中控制这十类建材的用量,选用低环境影响的建材产品可以有效降低建筑物化阶段的碳排放。  相似文献   

4.
建筑部门碳排放在社会整体碳排放中占比较大,以建材碳排放为主的建筑隐含碳排放和以运行能源消耗为主的建筑运行碳排放是建筑全寿命周期碳排放的2个最主要部分。开展零碳建筑的研究和实践有助于加速建筑部门深入推进碳减排,在建材碳排放和运行碳排放两方面发力,促进建筑从运行阶段零碳排放到全寿命周期零碳排放,进而推动实现个体到整体的建筑零碳排放目标。通过对加拿大零碳建筑设计评价标准、运行评价标准的剖析,以及实际评价项目的介绍,结合我国当前建筑节能、绿色建筑标准编制和实施情况,对比了中加在建筑碳排放计算、建筑碳中和基础、建筑碳抵消措施、零碳目标实施路径及关键评价指标方面的异同,提出了我国绿色建筑项目进行零碳设计和运行可采取的方式和应注意的问题。  相似文献   

5.
《中国建材》2022,(7):20-21
6月16日,CCTV《朝闻天下》栏目聚焦水泥、玻璃行业节能降碳技术研发应用,报道专题“建材技术创新节能效率世界领先”,对建材行业绿色化、智能化发展取得的成就进行了报道。水泥、玻璃这些建筑材料,曾经是高耗能产业的代表。然而,随着近年来建材行业不断技术创新,开展了大量节能降碳技术研发和应用。我国的建材生产工艺,特别是节能效率已经是世界领先。  相似文献   

6.
太阳能技术的引入在建筑使用阶段达到了低碳减排的目的,然而"低碳"不能依靠末端减排。作为一项系统工程,真正实现低碳建筑要靠系统减排。该文以"零能耗太阳能住宅产品"为例,通过核算建筑全生命周期(主要是建材开采、生产阶段和建筑使用阶段)的碳排放,客观、真实地反映太阳能光伏技术的应用对建筑全生命周期碳排放的影响。结论:由于使用太阳能系统,使用阶段的碳排放量降低了90%,然而太阳能系统在建材生产阶段的碳排放量也是不容忽视的,太阳能光电板生产的碳排放占总建材碳排放量的41%,必须纳入到建筑碳排放的全生命周期中去考虑。  相似文献   

7.
高层办公建筑体量大、能耗高、碳排放基量大,已成为公共建筑节能减排的重点。根据建筑全生命周期碳排放评价体系,将高层办公建筑全生命周期划分为4个阶段:建材生产、建筑施工、运行维护和拆解回收;梳理了各阶段的碳排放因子,将"年单位建筑面积碳排放量kgCO_2/(m~2·a)"作为碳排放计量参数,以消除使用年限、建筑规模不同的影响,便于开展计算结果的平行比较;进一步创建了高层办公建筑全生命周期碳排放计算模型。基于模型计算了天津市29栋高层办公建筑全生命周期的碳排放量,结果在48.3~66.1 kgCO_2/(m~2·a)之间,其中"运行维护"阶段碳排放占比最大,达到89.3%,其次是"建材生产"阶段,占比10.4%,"建筑施工"阶段碳排放与"拆解回收"阶段减碳量可相互抵消而忽略不计。运用SVR(支持向量回归机)模型,对碳排放计算结果与影响变量进行拟合分析,构建出高层办公建筑全生命周期碳排放预测模型,预测模型得出的训练样本(22栋)、测试样本(7栋)碳排放值与实际值相关系数分别为0.85和0.95,模型预测性能良好。该预测模型通过输入4个影响变量数据,即可得碳排放量预测值,能够极大地降低运算时间和工作量,实现了设计师在高层办公建筑设计初期阶段方便快捷的预测碳排放。  相似文献   

8.
沈丹丹 《建筑施工》2021,43(10):2162-2166
建立建筑全生命周期碳排放量计算模型,定量研究生产、运输、建造、运行、拆除和回收不同阶段的碳排放量,并以上海某公共建筑为案例,进行了建筑全生命周期碳排放量的计算,结果表明,该建筑全生命周期单位面积碳排放量指标为2.72 t/m2,运行期间的建筑碳排放量在建筑全生命周期碳排放量占比最高,其次为建材生产阶段.降低运行阶段的能源需求,选择可再循环和碳排放因子小的建材、减少建筑材料的使用和浪费有助于降低建筑全生命周期碳排放量.该模型的建立,可为建筑全生命周期碳排放计算提供依据,为优化设计方案、建造方案和运行方案提供方法指导.  相似文献   

9.
《城市开发》2022,(12):93-95
<正>随着国家“3060双碳”目标的提出,绿色低碳的工作生活方式逐渐深入人心。如何采取有效的手段来推动企业、个人减少碳排放以履行保护环境的社会责任,成为广泛关注的话题。据中国建筑节能协会发布的《中国建筑能耗研究报告(2020)》,建筑从建材生产、建筑施工及建筑运行全生命周期碳排放中,建筑运行阶段的碳排放约占43%,可见,建筑运行阶段的低碳管理对实现建筑行业的减碳目标意义重大。海纳万商物业管理有限公司(以下简称“海纳万商”)作为中海物业旗下非居业务子品牌,  相似文献   

10.
沈丹丹 《建筑施工》2021,43(10):2162-2166
建立建筑全生命周期碳排放量计算模型,定量研究生产、运输、建造、运行、拆除和回收不同阶段的碳排放量,并以上海某公共建筑为案例,进行了建筑全生命周期碳排放量的计算,结果表明,该建筑全生命周期单位面积碳排放量指标为2.72 t/m2,运行期间的建筑碳排放量在建筑全生命周期碳排放量占比最高,其次为建材生产阶段.降低运行阶段的能源需求,选择可再循环和碳排放因子小的建材、减少建筑材料的使用和浪费有助于降低建筑全生命周期碳排放量.该模型的建立,可为建筑全生命周期碳排放计算提供依据,为优化设计方案、建造方案和运行方案提供方法指导.  相似文献   

11.
沈丹丹 《建筑施工》2021,43(10):2162-2166
建立建筑全生命周期碳排放量计算模型,定量研究生产、运输、建造、运行、拆除和回收不同阶段的碳排放量,并以上海某公共建筑为案例,进行了建筑全生命周期碳排放量的计算,结果表明,该建筑全生命周期单位面积碳排放量指标为2.72 t/m2,运行期间的建筑碳排放量在建筑全生命周期碳排放量占比最高,其次为建材生产阶段.降低运行阶段的能源需求,选择可再循环和碳排放因子小的建材、减少建筑材料的使用和浪费有助于降低建筑全生命周期碳排放量.该模型的建立,可为建筑全生命周期碳排放计算提供依据,为优化设计方案、建造方案和运行方案提供方法指导.  相似文献   

12.
在我国宣布双碳目标的大背景下,计入建筑领域的碳排放主要指建筑运行碳排放(建材生产环节碳排放通常划分在工业领域),因此,建筑运行能耗的量化公示、分析,进而合理有序地降低,对我国建筑行业实现双碳目标具有重要意义。公共建筑单位面积运行能耗和碳排放强度均远大于其他类型民用建筑,是建筑运行节能减碳的重点。聚焦建立在公共建筑能耗数据收集工作基础上的能耗信息公示制度,分析了我国建筑运行能耗信息公示要素及公示活动各利益相关方的角色,通过剖析我国公共建筑运行能耗公示相关工作,明确了能耗信息公示在提升建筑运行能效方面发挥作用的关键要素以及目前工作方式的缺失;借鉴基于建筑能耗评价比对的建筑运行能耗信息公示国际经验,针对目前我国能耗信息公示活动的现状和存在问题,提出政策建议。  相似文献   

13.
居住建筑节能降碳是减少建设领域碳排放量的关键环节。了解我国居住建筑能耗现状,研究其节能降碳途径,对于降低居住建筑能耗水平、减少其碳排放具有重要意义。本文首先分析了我国居住建筑能耗统计情况,然后综述了不同气候地区居住建筑能耗现状,最后从新建居住建筑节能设计、既有居住建筑节能改造和提升民众节能降碳意识三个方面提出了居住建筑节能降碳途径。  相似文献   

14.
选取重庆地区量大面广的装配式混凝土建筑为研究对象,基于工程量清单数据,利用碳排放因子法,建立碳排放测算模型,分析不同类型不同装配率建筑在物化阶段较现浇混凝土建筑的节能减排情况。案例分析表明:装配式建筑物化阶段碳排放量为236.11~295.19kgCO2/m2,较传统现浇混凝土结构体系,建筑碳减排比例为6.04%~8.79%,减排比例随装配率提升及现场预制构件应用的增加而增加;同时,发现建材生产阶段占物化阶段碳排放量最高,可达85%以上,且装配式高层建筑的节能减排效果更加突出。  相似文献   

15.
《建筑碳排放计算标准》是北京冬奥会场馆碳排放量核算依据,为了通过技术性引导来激发建筑师的创造力,结合实际运用来解读标准中所包含的设计策略。基于标准所构建的框架,从建材生产运输、建造及拆除、建筑运行三个阶段来总结冬奥场馆的低碳设计策略。建材生产运输阶段可通过数字化软件,选用低碳排放系数建材和当地材料,以及钢结构的轻量化来降低碳排放;建造拆除阶段可通过减少土方量,采用预制装配式技术和既有建筑改造等策略降低碳排放;建筑运行阶段可通过引入自然通风、自然采光,使用可再生能源,增加绿地碳汇等策略降低碳排放。  相似文献   

16.
为助力建筑业实现双碳目标,文中以斜拉桥为研究对象,将其全寿命周期划分为建材准备、施工、运营维护以及拆除报废4个阶段。采用碳排放因子法建立各阶段的碳排放计算模型,并以实际案例进行碳排放核算和敏感性分析。结果显示斜拉桥各阶段的碳排放占比为45.59%、0.26%、51.30%和2.85%。敏感性分析结果表明,建材准备阶段最敏感的是铸造件的碳排放因子,运营维护阶段最敏感的是电能的碳排放因子。研究结果为斜拉桥的碳排放优化策略提供了量化依据,并为建筑业实现双碳目标提供了具体路径与方法参考。  相似文献   

17.
选取湖北省恩施市某绿色建筑为例,对其全生命周期内的碳排放进行计算分析。结果表明,该建筑全生命周期的碳排放主要集中在建筑物使用和建材生产阶段,其中建筑使用阶段碳排放占比达80%以上,而建筑建造阶段及拆除阶段碳排放较少。同时,由于采用绿色建筑技术,折算后的建筑单位面积年碳排放量,均低于恩施同期设计建造建筑的年单位面积排放水平,节能减排效果较为显著。  相似文献   

18.
为测算建筑工程全生命周期碳排放,基于全生命周期理论,将建筑全生命周期分为建材生产、运输、施工安装、运营使用和维护更新、废弃与拆除 5 个阶段,分别分析各阶段碳排放的来源,运用碳排放因子法确定各阶段碳排放计算方法,构建建筑全生命周期碳排放测算模型,结合广州市某高校办公楼改扩建工程案例,分析各阶段碳排放特点与强度,为建筑碳排放测算研究提供参考。测算结果表明,建筑材料生产和建筑运营维护是建筑全生命周期碳排放最大的阶段,分别占该建筑全生命周期碳排放的 30.03%和 68.00%。同时也是减排潜力最大的阶段。  相似文献   

19.
木结构建筑由于在建材原料方面的减碳优势得以被重视。本研究基于全生命周期分析法,结合国家碳排放标准,聚焦轻型木结构建筑,测算其全生命周期各阶段碳排放,并比较同等体量的混凝土结构和轻钢结构建筑。结果表明,轻型木结构建筑在建材生产、建材运输、运行、建造拆除阶段碳排放都远低于混凝土结构和轻钢结构建筑,表现出明显的减碳优势。  相似文献   

20.
通过对钢结构工业厂房设计、建材采购和运输、建造施工、投产使用、拆除回收等各个环节的碳足迹特征分析,构建钢结构工业厂房全生命周期碳足迹评价模型,并将其应用于实际工程案例。结果表明,钢结构工业厂房在使用阶段和物化阶段的碳排放量占总排放量的99%,因此,这两个阶段是实现节能减排的关键阶段。通过探索不同建筑结构形式的工业厂房碳排放量,对比分析不同建筑结构形式的工业厂房节能减排关键因素和阶段。期望通过建立钢结构工业厂房碳足迹核算模型,以帮助企业实现低碳转型,并为建筑行业全生命周期的碳足迹评价研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号