共查询到20条相似文献,搜索用时 15 毫秒
1.
The rolling element bearing characteristic frequencies contain very little energy and are usually overwhelmed by noise and
higher level of structural vibrations. The continuous wavelet transform enables one to look at the evolution in the time scale
joint representation plane. This makes it very suitable for the detection of singularity generated by localized defects in
a mechanical system. However, most applications of the continuous wavelet transform have widely focused on the use of the
Morlet wavelet transform. The complex Hermitian wavelet is constructed based on the first and the second derivatives of the
Gaussian function to detect signal singularities. The Fourier spectrum of Hermitian wavelet is real, which the Fourier spectrum
has no complex phase and the Hermitian wavelet does not affect the phase of a signal in complex domain. This gives the desirable
ability to detect the singularity characteristic of a signal precisely. In this study, the Hermitian wavelet amplitude and
phase map are used in conjunction to detect and diagnose the bearing fault. The Hermitian wavelet amplitude and phase map
are found to show distinctive signatures in the presence of bearing inner race or outer race damage. The simulative and experimental
results show that the Hermitian wavelet amplitude and phase map can extract the transients from strong noise signals and can
effectively diagnose bearing faults. 相似文献
2.
简要介绍了轴承故障诊断的基本方法,通过对比共振解调法和经验模态分解法,证明了经验模态分解是一种适用于分析非线性、非平稳信号的方法.同时,通过实际例子验证了该方法可以用于有效地发现轴承故障,从而提高了诊断的准确性. 相似文献
3.
Vibration signals measured from a mechanical system are useful to detect system faults. Signal processing has been used to extract fault information in bearing systems. However, a wide vibration signal frequency band often affects the ability to obtain the effective fault features. In addition, a few oscillation components are not useful at the entire frequency band in a vibration signal. By contrast, useful fatigue information can be embedded in the noise oscillation components. Thus, a method to estimate which frequency band contains fault information utilizing group delay was proposed in this paper. Group delay as a measure of phase distortion can indicate the phase structure relationship in the frequency domain between original (with noise) and denoising signals. We used the empirical mode decomposition of a Hilbert-Huang transform to sift the useful intrinsic mode functions based on the results of group delay after determining the valuable frequency band. Finally, envelope analysis and the energy distribution after the Hilbert transform were used to complete the fault diagnosis. The practical bearing fault data, which were divided into inner and outer race faults, were used to verify the efficiency and quality of the proposed method. 相似文献
4.
5.
针对滚动轴承故障振动信号的非平稳特征,介绍了一种基于Teager-Huang时频谱和边际谱的滚动轴承故障诊断方法。详细阐述了Teager-Huang时频谱和边际谱的计算方法及物理意义。给出了该故障诊断方法的步骤,并对仿真和实际轴承的滚动体故障、内圈故障和外圈故障信号进行了分析和故障诊断。结果表明,基于Teager-Huang变换的故障诊断方法具有计算速度快,估计准确稳定的特点,是准确判断滚动轴承故障状态的一种有效新方法。 相似文献
6.
基于经验小波变换的机械故障诊断方法研究 总被引:14,自引:0,他引:14
经验小波变换(EWT)是一种新的自适应信号分解方法,该方法继承了 EMD 和小波分析方法的各自优点,通过提取频域极大值点自适应地分割傅里叶频谱以分离不同的模态,然后在频域自适应地构造带通滤波器组从而构造正交小波函数,以提取具有紧支撑傅立叶频谱的调幅-调频(AM-FM)成分。本文将该方法引用到机械故障诊断中,提出了一种基于经验小波变换的机械故障诊断方法,并与EMD方法进行了对比分析。仿真结果表明,经验小波变换方法明显优于EMD方法,能有效地分解出信号的固有模态。与 EMD 相比较,该方法具有分解的模态少,不存在虚假的模态,计算量小,且在理论上具有易理解性等特点。最后将该方法应用到转子碰磨故障诊断中,实验结果进一步验证了该方法的有效性,能够有效地揭示出碰磨故障数据的频率结构,区分碰磨故障的严重程度。 相似文献
7.
《Measurement》2016
The extraction of repetitive impacts from vibration signals plays an essential role in bearing fault detection. Among different signal processing algorithms, morphological filter (MF) has attracted lots of attention because it could directly extract the geometric structure of the impulsive feature and only needs little computation. However, the conventional MF and some current improvements are based on the local optima of the raw signal to de-noise the noisy signal and its faulty feature extracting capability would be greatly affected by the noise. In this paper, a new improved MF algorithm is proposed to overcome such deficiency. Firstly, morphological gradient (MG) operator is selected in this paper due to its capability of picking up both positive and negative impulses. Then, based on the relationship between the defect induced impulse and a harmonic function with the resonant frequency, the harmonic waveform in a period is adopted to instruct the construction of structuring element (SE). The improved MF can obtain the fault feature from low SNR signals. The processing results of a simulation signal and two sets of experimental signals and a set of comparisons verify the effectiveness and robustness of the proposed method. 相似文献
8.
针对开关电流(SI)电路的故障诊断和定位问题,为进一步提高故障准确率,提出了基于信息熵和Haar小波变换的开关电流电路故障诊断新方法。该方法采用伪随机信号激励经蒙特卡罗分析、Haar小波正交滤波器分解和信息熵及模糊集的计算来实现故障特征的提取,以减少信号的冗余。最后构建故障字典,完成各故障模式的故障分类。对六阶切比雪夫低通滤波器进行了仿真实验验证,获得了100%的故障诊断准确率,与其它方法进行比较,实验结果显示了本文方法的优越性。 相似文献
9.
基于小波及非线性预测的轴承故障诊断方法 总被引:1,自引:0,他引:1
在非线性时间序列预测研究的基础上,提出非线性预测效果的特征提取方法.首先对采集到的足够长轴承数据采用小波变换进行消噪处理及边界延拓,使其满足预测需要的无限长、无噪声的条件,这样延迟时间取任意值均能重构原系统相空间;然后采用基于可预测性的选取嵌入维数的方法确定轴承各种状态信号的嵌入维数,进行相空间重构.应用实验结果表明:该方法提取的特征值能明显地区分轴承各种状态信号,且对数据分段长度的稳定性好,可以作为识别轴承故障的一种新途径. 相似文献
10.
Bearing fault detection using wavelet packet transform of induction motor stator current 总被引:6,自引:0,他引:6
Induction motor vibrations, caused by bearing defects, result in the modulation of the stator current. In this research, bearing defect is detected using the stator current analysis via Meyer wavelet in the wavelet packet structure, with energy comparison as the fault index. The advantage of this method is in the detection of incipient faults. The presented method is evaluated using experimental signals. Sets of data are gathered before and after using defective bearings. Compared to conventional methods, the superiority of the proposed method is shown in the success of fault detection. 相似文献
11.
在强噪声背景下难以提取出滚动轴承的故障特征,导致对轴承的故障诊断准确率不高,针对这一问题,提出了一种基于小波变换、改进奇异值分解多级降噪算法与支持向量机模型的轴承故障诊断方法。首先,采用小波降噪对滚动轴承的原始信号进行了初始降噪,消除了部分的随机噪声;然后,主要通过改进相空间矩阵重构方式,对该信号进行了改进奇异值分解二次降噪,并提出了新的奇异值有效秩阶次确定方法,利用峭度对一维信号提取方案进行了优化,并对其完成了降噪;最后,通过提取了10个有效特征,结合支持向量机在MATLAB中进行了仿真实验,分析了不同特征对轴承的故障诊断结果的影响,并将方法与其他方法进行了对比分析。研究结果表明:采用多级降噪算法降低了轴承工作状态下的背景噪声,使其故障特征频率更为明显;支持向量机分类诊断器的故障识别准确率达到98.3%,能够有效地识别轴承故障发生的位置和严重程度。 相似文献
12.
因轴承的工作环境恶劣,导致其故障多发,在对轴承故障进行快速诊断和定位时存在困难,为此,提出了一种基于综合信息融合神经网络的轴承故障智能诊断方法.首先,介绍了前置神经网络的工作原理,推导了前置神经网络的链接权值系数训练方法,制定了前置神经网络的算法流程;并基于D-S证据论和Dempster组合规则,设计了后置神经网络的故... 相似文献
13.
基于阶次跟踪和变换时频谱的轴承故障诊断 总被引:1,自引:2,他引:1
综合利用阶次跟踪和Teager-Huang变换时频分析技术,进行齿轮箱起动过程轴承故障诊断.首先,对齿轮箱升降速瞬态信号进行时域同步采样,并对时域信号进行等角度重采样转化为角域平稳信号,再对角域信号进行EMD分解,将振动信号分解成不同特征时间尺度的单分量固有模态函数.然后,用Teager能量算子计算各固有模态函数的瞬时频率和瞬时幅值,进而得到Teager-Huang变换时频谱.通过对齿轮箱起动过程轴承故障振动信号的分析表明,该方法能有效地识别轴承故障. 相似文献
14.
Gear fault detection and diagnosis under speed-up condition based on order cepstrum and radial basis function neural network 总被引:1,自引:0,他引:1
Varying speed machinery condition detection and fault diagnosis are more difficult due to non-stationary machine dynamics
and vibration. Therefore, most conventional signal processing methods based on time invariant carried out in constant time
interval are frequently unable to provide meaningful results. In this paper, a study is presented to apply order cepstrum
and radial basis function (RBF) artificial neural network (ANN) for gear fault detection during speedup process. This method
combines computed order tracking, cepstrum analysis with ANN. First, the vibration signal during speed-up process of the gearbox
is sampled at constant time increments and then is re-sampled at constant angle increments. Second, the re-sampled signals
are processed by cepstrum analysis. The order cepstrum with normal, wear and crack fault are processed for feature extracting.
In the end, the extracted features are used as inputs to RBF for recognition. The RBF is trained with a subset of the experimental
data for known machine conditions. The ANN is tested by using the remaining set of data. The procedure is illustrated with
the experimental vibration data of a gearbox. The results show the effectiveness of order cepstrum and RBF in detection and
diagnosis of the gear condition. 相似文献
15.
针对滚动轴承振动信号非平稳非线性的特征,提出一种基于加权排列熵和差分进化算法优化极限学习机(DE-ELM)的滚动轴承故障诊断方法。首先利用自适应噪声的完全集合经验模态分解处理轴承振动信号得到固有模态函数(IMF),然后计算主要IMF分量的加权排列熵组成故障特征向量,最后利用差分优化算法(DE)优化极限学习机隐含层输入权值和偏置,并将故障特征向量作为DE-ELM的输入。实验证明,加权排列熵能够精确提取故障特征,DE-ELM算法能有效提高故障分类精度。与多种方法相比,该方法更加准确可靠。 相似文献
16.
提出了采用小波变换和独立成分分析(ICA)作为预处理器来进行特征提取的神经网络开关电流电路故障诊断方法。该方法对采集到的故障响应信号进行Haar小波正交滤波器分解,获得低频近似信息和高频细节信息;然后利用独立成分分析方法进行ICA故障特征提取;最后将所得到的最优故障特征输入到BP神经网络中进行故障分类。对六阶切比雪夫低通滤波器和六阶椭圆带通滤波器电路进行了仿真实验验证,获得了100%的故障诊断准确率,与其他方法进行比较,实验结果显示了该方法的优越性。 相似文献
17.
针对齿轮在故障损伤状态下的振动信号,提出一种基于S变换谱二维核密度估计的冲击特征提取方法,以实现齿轮的故障诊断。该方法首先对包含冲击特征的振动信号进行S变换;然后将S变换谱乘以一个系数后圆整,得到一个整数矩阵;最后以S变换谱的时间和频率构成一个二维随机变量,以整数矩阵中的元素值作为二维随机变量各个采样样本的个数,对二维随机变量进行核密度估计,并最终得到一个二维核密度函数。该核密度函数相当于由S变换谱经过一次平滑去噪的过程获得,其中的噪声得到了有效的抑制,而冲击特征则得到了加强与突显。仿真振动信号和齿轮箱故障振动信号的分析结果表明,该方法能够有效地强化并提取出振动信号中周期性的冲击特征,从而实现齿轮箱相关故障的诊断。 相似文献
18.
对于某些旋转机械(转炉、轧机)来说,一直处于变速运动,因此对变速过程的振动信号进行分析具有重要意义。滚动轴承作为其重要部件,对其升速过程的振动信号进行研究,有助于滚动轴承的故障诊断。提出了一种基于阶次跟踪和总体经验模式分解相结合的诊断方法。首先将升速过程的时域信号转化为角域信号,然后对角域信号进行总体经验模态分解,再用互相关、峭度准则对IMF分量进行提取,最后对提取到的信号进行阶次谱分析。通过实验案例的分析,能够有效的识别滚动轴承故障,进而表明本方法的有效性。 相似文献
19.
《Mechanical Systems and Signal Processing》2007,21(6):2607-2615
A number of techniques for detection of faults in rolling element bearing using frequency domain approach exist today. For analysing non-stationary signals arising out of defective rolling element bearings, use of conventional discrete Fourier transform (DFT) has been known to be less efficient. One of the most suited time–frequency approach, wavelet transform (WT) has inherent problems of large computational time and fixed-scale frequency resolution. In view of such constraints, the Hilbert–Huang Transform (HHT) technique provides multi-resolution in various frequency scales and takes the signal's frequency content and their variation into consideration. HHT analyses the vibration signal using intrinsic mode functions (IMFs), which are extracted using the process of empirical mode decomposition (EMD). However, use of Hilbert transform (HT)-based time domain approach in HHT for analysis of bearing vibration signature leads to scope for subjective error in calculation of characteristic defect frequencies (CDF) of the rolling element bearings. The time resolution significantly affects the calculation of corresponding frequency content of the signal. In the present work, FFT of IMFs from HHT process has been incorporated to utilise efficiency of HT in frequency domain. The comparative analysis presented in this paper indicates the effectiveness of using frequency domain approach in HHT and its efficiency as one of the best-suited techniques for bearing fault diagnosis (BFD). 相似文献
20.
为了保障风力发电机组的安全可靠运行,结合风力发电机组中轴承故障特性,研发了一套针对风力发电机组轴承的故障诊断软件。该软件利用Visual C++和Matlab混合编程实现,可以对风机轴承进行数据采集和故障诊断。根据诊断结果可以对机组工作状态做出判断,针对异常情况可以帮助工作人员查明故障原因,提前做好预警和维护计划,提高风力发电效益。最后在模拟实验台上采集了故障轴承的振动信号并用该软件进行了时频分析、解调分析和倒谱分析,分析结果与实际故障吻合良好。 相似文献